scholarly journals Heterogeneous glacier thinning patterns over the last 40 years in Langtang Himal, Nepal

2016 ◽  
Vol 10 (5) ◽  
pp. 2075-2097 ◽  
Author(s):  
Silvan Ragettli ◽  
Tobias Bolch ◽  
Francesca Pellicciotti

Abstract. This study presents volume and mass changes of seven (five partially debris-covered, two debris-free) glaciers in the upper Langtang catchment in Nepal. We use a digital elevation model (DEM) from 1974 stereo Hexagon satellite data and seven DEMs derived from 2006–2015 stereo or tri-stereo satellite imagery (e.g., SPOT6/7). The availability of multiple independent DEM differences allows the identification of a robust signal and narrowing down of the uncertainty about recent volume changes. The volume changes calculated over several multiyear periods between 2006 and 2015 consistently indicate that glacier thinning has accelerated with respect to the period 1974–2006. We calculate an ensemble-mean elevation change rate of –0.45 ± 0.18 m a−1 for 2006–2015, while for the period 1974–2006 we compute a rate of −0.24 ± 0.08 m a−1. However, the behavior of glaciers in the study area is heterogeneous, and the presence or absence of debris does not seem to be a good predictor for mass balance trends. Debris-covered tongues have nonlinear thinning profiles, and we show that recent accelerations in thinning correlate with the presence of supraglacial cliffs and lakes. At stagnating glacier areas near the glacier front, however, thinning rates decreased with time or remained constant. The April 2015 Nepal earthquake triggered large avalanches in the study catchment. Analysis of two post-earthquake DEMs revealed that the avalanche deposit volumes remaining 6 months after the earthquake are negligible in comparison to 2006–2015 elevation changes. However, the deposits compensate about 40 % the mass loss of debris-covered tongues of 1 average year.

2011 ◽  
Vol 52 (59) ◽  
pp. 109-115 ◽  
Author(s):  
Jeffrey A. VanLooy ◽  
Richard R. Forster

AbstractInvestigations into glacial changes, including understanding variations in the rates of glacial volume and surface-elevation changes, have increased over the past decade. This study uses historical glacier elevation data in the form of topographic maps from 1970 and a digital elevation model from the mid-1980s to calculate surface-elevation and volume changes for Ha-Iltzuk Icefield, southwest British Columbia, Canada. Results indicate that the icefield thinned at an average rate of 0.76±0.25 ma–1 during this period. A previous study of Ha-Iltzuk Icefield also using the geodetic method found a thinning rate of 1.0±0.20ma–1 between the mid-1980s and 1999, indicating a slight increase in the amount of icefield thinning. Within the ablation zone, thinning increased with decreasing elevation at a rate of 1.9±0.68 ma–1 km–1 between these two periods (1970 to mid-1980s versus mid-1980s to 1999). Analysis of meteorological data suggests that increases in both temperature and rainfall, as well as decreases in snowfall, likely contributed to the increased thinning rate.


2021 ◽  
Vol 9 ◽  
Author(s):  
Guodong Chen ◽  
Shengjun Zhang ◽  
Shenghao Liang ◽  
Jiaheng Zhu

Long-term altimetry data are one of the major sources to analyze the change in global ice reserves. This study focuses on the elevation and volume changes in the Greenland ice sheet (GrIS) from 2010 to 2019 derived from altimetry observations. In this study, the methods for determining surface elevation change rates are discussed, and specific strategies are designed. A new elevation difference method is proposed for CryoSat-2 synthetic aperture interferometric (SARin) mode observations. Through validation with Airborne Topographic Mapper (ATM) data, this new method is proved to be effective for slope terrains at the margins of the ice sheet. Meanwhile, a surface fit method is applied for the flat interior of the ice sheet where low resolution mode (LRM) observations are provided. The results of elevation change rates in the GrIS from 2010 to 2019 are eventually calculated by combining CryoSat-2 and ATM observations. An elevation change rate of −11.83 ± 1.14 cm·a−1 is revealed, corresponding to a volume change rate of −200.22 ± 18.26 km3·a−1. The results are compared with the elevation changes determined by Ice, Cloud, and Land Elevation Satellite (ICESat) from 2003 to 2009. Our results show that the overall volume change rate in the GrIS slowed down by approximately 10% during the past decade, and that the main contributor of GrIS ice loss has shifted from the southeast coast to the west margin of the ice sheet.


2007 ◽  
Vol 46 ◽  
pp. 106-116 ◽  
Author(s):  
C. Nuth ◽  
J. Kohler ◽  
H.F. Aas ◽  
O. Brandt ◽  
J.O. Hagen

AbstractThis study uses older topographic maps made from high-oblique aerial photographs for glacier elevation change studies. We compare the 1936/38 topographic map series of Svalbard (Norwegian Polar Institute) to a modern digital elevation model from 1990. Both systematic and random components of elevation error are examined by analyzing non-glacier elevation difference points. The 1936/38 photographic aerial survey is examined to identify areas with poor data coverage over glaciers. Elevation changes are analyzed for seven regions in Svalbard (~5000 km2), where significant thinning was found at glacier fronts, and elevation increases in the upper parts of the accumulation areas. All regions experience volume losses and negative geodetic balances, although regional variability exists relating to both climate and topography. Many surges are apparent within the elevation change maps. Estimated volume change for the regions is –1.59±0.07km3 a–1 (ice equivalent) for a geodetic annual balance of –0.30ma–1w.e., and the glaciated area has decreased by 16% in the 54 year time interval. The 1936–90 data are compared to modern elevation change estimates in the southern regions, to show that the rate of thinning has increased dramatically since 1990.


Author(s):  
X. Qiao ◽  
S. H. Lv ◽  
L. L. Li ◽  
X. J. Zhou ◽  
H. Y. Wang ◽  
...  

Compared to the wide use of digital elevation model (DEM), digital surface model (DSM) receives less attention because that it is composed by not only terrain surface, but also vegetations and man-made objects which are usually regarded as useless information. Nevertheless, these objects are useful for the identification of obstacles around an aerodrome. The primary objective of the study was to determine the applicability of DSM in obstacle clearance surveying of aerodrome. According to the requirements of obstacle clearance surveying at QT airport, aerial and satellite imagery were used to generate DSM, by means of photogrammetry, which was spatially analyzed with the hypothetical 3D obstacle limitation surfaces (OLS) to identify the potential obstacles. Field surveying was then carried out to retrieve the accurate horizontal position and height of the obstacles. The results proved that the application of DSM could make considerable improvement in the efficiency of obstacle clearance surveying of aerodrome.


2021 ◽  
Author(s):  
Amaury Dehecq ◽  
Alex Gardner ◽  
Romain Hugonnet ◽  
Joaquin Belart

<p>Glaciers retreat contributed to about 1/3 of the observed sea level rise since 1971 (IPCC). However, long term estimates of glaciers volume changes rely on sparse field observations and region-wide satellite observations are available mostly after 2000. The now declassified images from the American reconnaissance satellite series Hexagon (KH-9), that acquired 6 m resolution stereoscopic images from 1971 to 1986, open new possibilities for glaciers observation.</p><p>Based on recently published methodology (Dehecq et al., 2020, doi: 10.3389/feart.2020.566802), we process all available KH-9 images over the Arctic (Canadian arctic, Iceland, Svalbard, Russian arctic) to generate Digital Elevation Models (DEMs) and ortho-images for the period 1974-1980. We validate the KH-9 DEMs over Iceland against elevation derived from historical aerial images acquired within a month from the satellite acquisition.</p><p>Finally, we calculate the glacier elevation change between the historical DEMs and modern elevation obtained from a time series of ASTER stereo images and validated against ICESat-2 elevation. The geodetic glacier mass balance is calculated for all pan-Arctic regions and analyzed with reference to the last 20 years evolution.</p>


2018 ◽  
Vol 42 (6) ◽  
pp. 792-825 ◽  
Author(s):  
Daniel Falaschi ◽  
Tobias Bolch ◽  
Maria Gabriela Lenzano ◽  
Takeo Tadono ◽  
Andrés Lo Vecchio ◽  
...  

In contrast to the large surge-type glacier clusters widely known for several mountain ranges around the world, the presence of surging glaciers in the Andes has been historically seen as marginal. The improved availability of satellite imagery during the last years facilitates investigating of glaciers in more detail even in remote areas. The purpose of the study was therefore to revisit existing information about surge-type glaciers for the Central Andes of Argentina and Chile (32° 40′–34° 20′ S), to identify and characterize possible further surge-type glaciers, providing new insights into the mass balance and evolution of the velocity of selected glaciers during the surge phase. Based on the analysis of 1962–2015 satellite imagery, historical aerial images, differencing of digital elevation models and a literature survey, we identified 21 surge-type glaciers in the study area. Eleven surge events and six possible surge-type glaciers were identified and described for the first time. The estimation of annual elevation changes of these glaciers for the 2000–2011 period, which encompasses the latest surge events in the region, showed heterogeneous behavior with strongly negative to positive surface elevation change patterns (−1.1 to +1.0 m yr−1). Additionally, we calculated maximum surface velocities of 3±1.9 m d−1 and 3.1±1.1 m d−1 for two of the glaciers during the latest identifiable surge events of 1985–1987 and 2003–2007. Within this glacier cluster, highly variable advance rates (0.01–1 km yr−1) and dissimilar surface velocities at the surge peak (3–35 m d−1) were observed. In comparison with other clusters worldwide, surge-type glaciers in the Central Andes are on average smaller and show minor absolute advances. Generally low velocities and the heterogeneous duration of the surge cycles are common between them and glaciers in the Karakorum, a region with similar climatic characteristics and many known surge-type glaciers. As a definitive assertion concerning the underlying surge mechanism of surges in the Central Andes could not be drawn based on the remote sensing data, this opens more detailed research avenues for surge-type glaciers in the region.


Geomorphology ◽  
2008 ◽  
Vol 100 (3-4) ◽  
pp. 453-464 ◽  
Author(s):  
Hossein Saadat ◽  
Robert Bonnell ◽  
Forood Sharifi ◽  
Guy Mehuys ◽  
Mohammad Namdar ◽  
...  

2015 ◽  
Vol 56 (70) ◽  
pp. 184-192 ◽  
Author(s):  
R. Le Bris ◽  
F. Paul

AbstractThe meltwater from glaciers in Alaska contributes strongly to global sea-level rise, but accurate determination is challenging as only two comparatively small glaciers have long-term measurements of annual mass balance (Gulkana and Wolverine). Simple upscaling of their values to the entire region is error-prone as their representativeness is unknown and might be biased. Alternatively, differencing digital elevation models (DEMs) from two epochs provides overall volume changes for a longer period of time that can be converted to mass changes using appropriate density assumptions. Here we combine outlines from two glacier inventories to determine glacier-specific elevation changes over a 50 year period for 3180 glaciers in western Alaska using DEM differencing. This allows us to determine the representativeness of the land-terminating Gulkana and Wolverine Glaciers for the entire region and to exclude calving glaciers (marine and lacustrine) from the sample. Mean changes for all land-terminating, lake-terminating and tidewater glaciers are –0.23 ± 0.44, –0.63 ± 0.40 and –0.64 ± 0.66 m a–1, respectively, and –0.7 and –0.6 m a–1 for the two mass-balance or benchmark glaciers. Thus fortuitously their changes better represent calving glaciers and the overall mean (–0.63 ± 1.14 m a–1) than the change of land-terminating glaciers, i.e. they are not representative for their own type. Different methods of considering potential DEM artefacts provide variable mean changes but the same general result.


2013 ◽  
Vol 59 (215) ◽  
pp. 524-532 ◽  
Author(s):  
J.F. Levinsen ◽  
I.M. Howat ◽  
C.C. Tscherning

AbstractWe combine the complementary characteristics of laser altimeter data and stereoscopic digital elevation models (DEMs) to construct high-resolution (∼100 m) maps of surface elevations and elevation changes over rapidly changing outlet glaciers in Greenland. Measurements from spaceborne and airborne laser altimeters have relatively low errors but are spatially limited to the ground tracks, while DEMs have larger errors but provide spatially continuous surfaces. The principle of our method is to fit the DEM surface to the altimeter point clouds in time and space to minimize the DEM errors and use that surface to extrapolate elevations away from altimeter flight lines. This reduces the DEM registration errors and fills the gap between the altimeter paths. We use data from ICESat and ATM as well as SPOT 5 DEMs from 2007 and 2008 and apply them to the outlet glaciers Jakobshavn Isbræ (JI) and Kangerdlugssuaq (KL). We find that the main trunks of JI and KL lowered at rates of 30–35 and 7–20 m a−1,respectively. The rates decreased inland. The corresponding errors were 0.3–5.2 m a−1for JI and 0.3–5.1 m a−1for KL, with errors increasing proportionally with distance from the altimeter paths.


2009 ◽  
Vol 55 (190) ◽  
pp. 316-326 ◽  
Author(s):  
Reginald R. Muskett ◽  
Craig S. Lingle ◽  
Jeanne M. Sauber ◽  
Austin S. Post ◽  
Wendell V. Tangborn ◽  
...  

AbstractUsing airborne and spaceborne high-resolution digital elevation models and laser altimetry, we present estimates of interannual and multi-decadal surface elevation changes on the Bering Glacier system, Alaska, USA, and Yukon, Canada, from 1972 to 2006. We find: (1) the rate of lowering during 1972–95 was 0.9 ± 0.1 m a−1; (2) this rate accelerated to 3.0 ± 0.7 m a−1 during 1995–2000; and (3) during 2000–03 the lowering rate was 1.5 ± 0.4 m a−1. From 1972 to 2003, 70% of the area of the system experienced a volume loss of 191 ± 17 km3, which was an area-average surface elevation lowering of 1.7 ± 0.2 m a−1. From November 2004 to November 2006, surface elevations across Bering Glacier, from McIntosh Peak on the south to Waxell Ridge on the north, rose as much as 53 m. Up-glacier on Bagley Ice Valley about 10 km east of Juniper Island nunatak, surface elevations lowered as much as 28 m from October 2003 to October 2006. NASA Terra/MODIS observations from May to September 2006 indicated muddy outburst floods from the Bering terminus into Vitus Lake. This suggests basal–englacial hydrologic storage changes were a contributing factor in the surface elevation changes in the fall of 2006.


Sign in / Sign up

Export Citation Format

Share Document