scholarly journals Fractional snow-covered area: scale-independent peak of winter parameterization

2021 ◽  
Vol 15 (2) ◽  
pp. 615-632
Author(s):  
Nora Helbig ◽  
Yves Bühler ◽  
Lucie Eberhard ◽  
César Deschamps-Berger ◽  
Simon Gascoin ◽  
...  

Abstract. The spatial distribution of snow in the mountains is significantly influenced through interactions of topography with wind, precipitation, shortwave and longwave radiation, and avalanches that may relocate the accumulated snow. One of the most crucial model parameters for various applications such as weather forecasts, climate predictions and hydrological modeling is the fraction of the ground surface that is covered by snow, also called fractional snow-covered area (fSCA). While previous subgrid parameterizations for the spatial snow depth distribution and fSCA work well, performances were scale-dependent. Here, we were able to confirm a previously established empirical relationship of peak of winter parameterization for the standard deviation of snow depth σHS by evaluating it with 11 spatial snow depth data sets from 7 different geographic regions and snow climates with resolutions ranging from 0.1 to 3 m. An enhanced performance (mean percentage errors, MPE, decreased by 25 %) across all spatial scales ≥ 200 m was achieved by recalibrating and introducing a scale-dependency in the dominant scaling variables. Scale-dependent MPEs vary between −7 % and 3 % for σHS and between 0 % and 1 % for fSCA. We performed a scale- and region-dependent evaluation of the parameterizations to assess the potential performances with independent data sets. This evaluation revealed that for the majority of the regions, the MPEs mostly lie between ±10 % for σHS and between −1 % and 1.5 % for fSCA. This suggests that the new parameterizations perform similarly well in most geographical regions.

2020 ◽  
Author(s):  
Nora Helbig ◽  
Yves Bühler ◽  
Lucie Eberhard ◽  
César Deschamps-Berger ◽  
Simon Gascoin ◽  
...  

Abstract. The spatial distribution of snow in the mountains is significantly influenced through interactions of topography with wind, precipitation, shortwave and longwave radiation, and avalanches that may relocate the accumulated snow. One of the most crucial model parameters for various applications such as weather forecasts, climate predictions and in hydrological modeling is the fraction of the ground surface that is covered by snow, also called fractional snow-covered area (fSCA). While previous subgrid parameterizations for the spatial snow depth distribution and fSCA work well, performances were scale-dependent. Here, we were able to confirm a previously established empirical relationship of the peak of winter parameterization for the standard deviation of snow depth σ>sub>HS by evaluating it on 11 spatial snow depth data sets from 7 different geographic regions and snow climates with resolutions ranging from 0.1 m to 3 m. Enhanced performance (mean percentage errors (MPE) decreased by 25 %) across all spatial scales ≥ 200 m was achieved by recalibrating and introducing a scale-dependency in the dominant scaling variables. Scale-dependent MPEs vary between −7 % and 3 % for σ>sub>HS and between 0 % and 1 % for fSCA. A scale- as well as region-dependent evaluation revealed that for the majority of the regions the MPEs mostly lie between ±10 % for σ>sub>HS and between −1 % and 1.5 % for fSCA. This suggests that the new parameterizations perform similarly well in most geographical regions.


2020 ◽  
Author(s):  
Nora Helbig ◽  
Yves Bühler ◽  
Lucie Eberhard ◽  
César Deschamps-Berger ◽  
Simon Gascoin ◽  
...  

<p>Whenever there is snow on the ground, there will be large spatial variability in snow depth. The spatial distribution of snow is significantly influenced by topography due to wind, precipitation, shortwave and longwave radiation, and even snow avalanches relocate the accumulated snow. Fractional snow-covered area (fSCA) is an important model parameter characterizing the fraction of the ground surface that is covered by snow and is crucial for various model applications such as weather forecasts, climate simulations and hydrological modeling.</p><p>We recently suggested an empirical fSCA parameterization based on two spatial snow depth data sets acquired at peak of winter in Switzerland and Spain, which yielded best performance for spatial scales larger than 1000 m. However, this parameterization was not validated on independent snow depth data. To evaluate and improve our fSCA parameterization, in particular with regards to other spatial scales and snow climates (or geographic regions), we used spatial snow depth data sets form a wide range of mountain ranges in USA, Switzerland and France acquired by 5 different measuring methods. Pooling all snow depth data sets suggests that a scale-dependent parameter should be introduced to improve the fSCA parameterization, in particular for sub-kilometer spatial scales. Extending our empirical fSCA parameterization to a broader range of scales and snow climates is an important step towards accounting for spatio-temporal variability in snow depth in multiple snow model applications.</p>


2021 ◽  
Vol 15 (9) ◽  
pp. 4607-4624
Author(s):  
Nora Helbig ◽  
Michael Schirmer ◽  
Jan Magnusson ◽  
Flavia Mäder ◽  
Alec van Herwijnen ◽  
...  

Abstract. The snow cover spatial variability in mountainous terrain changes considerably over the course of a snow season. In this context, fractional snow-covered area (fSCA) is an essential model parameter characterizing how much ground surface in a grid cell is currently covered by snow. We present a seasonal fSCA algorithm using a recent scale-independent fSCA parameterization. For the seasonal implementation, we track snow depth (HS) and snow water equivalent (SWE) and account for several alternating accumulation–ablation phases. Besides tracking HS and SWE, the seasonal fSCA algorithm only requires subgrid terrain parameters from a fine-scale summer digital elevation model. We implemented the new algorithm in a multilayer energy balance snow cover model. To evaluate the spatiotemporal changes in modeled fSCA, we compiled three independent fSCA data sets derived from airborne-acquired fine-scale HS data and from satellite and terrestrial imagery. Overall, modeled daily 1 km fSCA values had normalized root mean square errors of 7 %, 12 % and 21 % for the three data sets, and some seasonal trends were identified. Comparing our algorithm performances to the performances of the CLM5.0 fSCA algorithm implemented in the multilayer snow cover model demonstrated that our full seasonal fSCA algorithm better represented seasonal trends. Overall, the results suggest that our seasonal fSCA algorithm can be applied in other geographic regions by any snow model application.


2017 ◽  
Author(s):  
Hanneke Luijting ◽  
Dagrun Vikhamar-Schuler ◽  
Trygve Aspelien ◽  
Mariken Homleid

Abstract. In Norway, thirty percent of the annual precipitation falls as snow. Knowledge of the snow reservoir is therefore important for energy production and water resource management. The land surface model SURFEX with the detailed snowpack scheme Crocus (SURFEX/Crocus) has been run with a grid spacing of approximately 1 km over an area in southern Norway for two years (01 September 2014–31 August 2016), using two different forcing data sets: 1) hourly meteorological forecasts from the operational weather forecast model AROME MetCoOp (2.5 km grid spacing), and 2) gridded hourly observations of temperature and precipitation (1 km grid spacing) in combination with the meteorological forecasts from AROME MetCoOp. We present an evaluation of the modeled snow depth and snow cover, as compared to point observations of snow depth and to MODIS satellite images of the snow-covered area. The evaluation focuses on snow accumulation and snow melt. The results are promising. Both experiments are capable of simulating the snow pack over the two winter seasons, but there is an overestimation of snow depth when using only meteorological forecasts from AROME MetCoOp, although the snow-covered area throughout the melt season is better represented by this experiment. The errors, when using AROME MetCoOp as forcing, accumulate over the snow season, showing that assimilation of snow depth observations into SURFEX/Crocus might be necessary when using only meteorological forecasts as forcing. When using gridded observations, the simulation of snow depth is significantly improved, which shows that using a combination of gridded observations and meteorological forecasts to force a snowpack model is very useful and can give better results than only using meteorological forecasts. There is however an underestimation of snow ablation in both experiments. This is mainly due to the absence of wind-induced erosion of snow in the SURFEX/Crocus model, underestimated snow melt and biases in the forcing data.


2021 ◽  
Author(s):  
Nora Helbig ◽  
Michael Schirmer ◽  
Jan Magnusson ◽  
Flavia Mäder ◽  
Alec van Herwijnen ◽  
...  

Abstract. The snow cover spatial variability in mountainous terrain changes considerably over the course of a snow season. In this context, fractional snow-covered area (fSCA) is therefore an essential model parameter characterizing how much of the ground surface in a grid cell is currently covered by snow. We present a seasonal fSCA algorithm using a recent scale-independent fSCA parameterization. For the seasonal implementation we track snow depth (HS) and snow water equivalent (SWE) and account for several alternating accumulation-ablation phases. Besides tracking HS and SWE, the seasonal fSCA algorithm only requires computing subgrid terrain parameters from a fine-scale summer digital elevation model. We implemented the new algorithm in a multilayer energy balance snow cover model. For a spatiotemporal evaluation of modelled fSCA we compiled three independent fSCA data sets. Evaluating modelled 1 km fSCA seasonally with fSCA derived from airborne-acquired fine-scale HS data, satellite- as well as terrestrial camera-derived fSCA showed overall normalized root mean square errors of respectively 9 %, 20 % and 22 %, and represented seasonal trends well. The overall good model performance suggests that the seasonal fSCA algorithm can be applied in other geographic regions by any snow model application.


1993 ◽  
Vol 18 ◽  
pp. 179-184
Author(s):  
Tsutomu Nakamura ◽  
Osamu Abe

The average amounts of seasonal snow cover and snowfall in Japan were calculated as 7.9 × 1013kg and 1.2 × 1014kg, respectively. The mass of seasonal snow cover of a heavy-snowfall winter, 1980–81 (56-Gosetsu), was calculated as 1.3 × 1014kg. The amount of 7.9 × 1013kg was converted to water equivalent of 230 mm on the whole snow-covered area, including snow-prone area. A mean of 370 mm in snow water equivalent was calculated for the snow area where mean snow depth on the ground was more than 10 cm.


2018 ◽  
Vol 12 (6) ◽  
pp. 2123-2145 ◽  
Author(s):  
Hanneke Luijting ◽  
Dagrun Vikhamar-Schuler ◽  
Trygve Aspelien ◽  
Åsmund Bakketun ◽  
Mariken Homleid

Abstract. In Norway, 30 % of the annual precipitation falls as snow. Knowledge of the snow reservoir is therefore important for energy production and water resource management. The land surface model SURFEX with the detailed snowpack scheme Crocus (SURFEX/Crocus) has been run with a grid spacing of 1 km over an area in southern Norway for 2 years (1 September 2014–31 August 2016). Experiments were carried out using two different forcing data sets: (1) hourly forecasts from the operational weather forecast model AROME MetCoOp (2.5 km grid spacing) including post-processed temperature (500 m grid spacing) and wind, and (2) gridded hourly observations of temperature and precipitation (1 km grid spacing) combined with meteorological forecasts from AROME MetCoOp for the remaining weather variables required by SURFEX/Crocus. We present an evaluation of the modelled snow depth and snow cover in comparison to 30 point observations of snow depth and MODIS satellite images of the snow-covered area. The evaluation focuses on snow accumulation and snowmelt. Both experiments are capable of simulating the snowpack over the two winter seasons, but there is an overestimation of snow depth when using meteorological forecasts from AROME MetCoOp (bias of 20 cm and RMSE of 56 cm), although the snow-covered area in the melt season is better represented by this experiment. The errors, when using AROME MetCoOp as forcing, accumulate over the snow season. When using gridded observations, the simulation of snow depth is significantly improved (the bias for this experiment is 7 cm and RMSE 28 cm), but the spatial snow cover distribution is not well captured during the melting season. Underestimation of snow depth at high elevations (due to the low elevation bias in the gridded observation data set) likely causes the snow cover to decrease too soon during the melt season, leading to unrealistically little snow by the end of the season. Our results show that forcing data consisting of post-processed NWP data (observations assimilated into the raw NWP weather predictions) are most promising for snow simulations, when larger regions are evaluated. Post-processed NWP data provide a more representative spatial representation for both high mountains and lowlands, compared to interpolated observations. There is, however, an underestimation of snow ablation in both experiments. This is generally due to the absence of wind-induced erosion of snow in the SURFEX/Crocus model, underestimated snowmelt and biases in the forcing data.


1993 ◽  
Vol 18 ◽  
pp. 179-184
Author(s):  
Tsutomu Nakamura ◽  
Osamu Abe

The average amounts of seasonal snow cover and snowfall in Japan were calculated as 7.9 × 1013kg and 1.2 × 1014kg, respectively. The mass of seasonal snow cover of a heavy-snowfall winter, 1980–81 (56-Gosetsu), was calculated as 1.3 × 1014kg. The amount of 7.9 × 1013kg was converted to water equivalent of 230 mm on the whole snow-covered area, including snow-prone area. A mean of 370 mm in snow water equivalent was calculated for the snow area where mean snow depth on the ground was more than 10 cm.


2015 ◽  
Vol 16 (4) ◽  
pp. 1752-1772 ◽  
Author(s):  
Steven A. Margulis ◽  
Manuela Girotto ◽  
Gonzalo Cortés ◽  
Michael Durand

Abstract This paper presents a newly proposed data assimilation method for historical snow water equivalent SWE estimation using remotely sensed fractional snow-covered area fSCA. The newly proposed approach consists of a particle batch smoother (PBS), which is compared to a previously applied Kalman-based ensemble batch smoother (EnBS) approach. The methods were applied over the 27-yr Landsat 5 record at snow pillow and snow course in situ verification sites in the American River basin in the Sierra Nevada (United States). This basin is more densely vegetated and thus more challenging for SWE estimation than the previous applications of the EnBS. Both data assimilation methods provided significant improvement over the prior (modeling only) estimates, with both able to significantly reduce prior SWE biases. The prior RMSE values at the snow pillow and snow course sites were reduced by 68%–82% and 60%–68%, respectively, when applying the data assimilation methods. This result is encouraging for a basin like the American where the moderate to high forest cover will necessarily obscure more of the snow-covered ground surface than in previously examined, less-vegetated basins. The PBS generally outperformed the EnBS: for snow pillows the PBS RMSE was ~54% of that seen in the EnBS, while for snow courses the PBS RMSE was ~79% of the EnBS. Sensitivity tests show relative insensitivity for both the PBS and EnBS results to ensemble size and fSCA measurement error, but a higher sensitivity for the EnBS to the mean prior precipitation input, especially in the case where significant prior biases exist.


2012 ◽  
Vol 6 (5) ◽  
pp. 3823-3862 ◽  
Author(s):  
J. W. Eveland ◽  
M. N. Gooseff ◽  
D. J. Lampkin ◽  
J. E. Barrett ◽  
C. D. Takacs-Vesbach

Abstract. Accumulated snow in the McMurdo Dry Valleys, while limited, has great ecological significance to subnivian soil environments. Though sublimation dominates the ablation process in this region, measurable increases in soil moisture and insulation from temperature extremes provide more favorable conditions with respect to subnivian soil communities. While precipitation is not substantial, significant amounts of snow can accumulate, via aeolian redistribution, in topographic lees along the valley bottoms, forming thousands of discontinuous snow patches. These patches have the potential to act as significant sources of local melt water, controlling biogeochemical cycling and the landscape distribution of microbial communities. Therefore, determining the spatial and temporal dynamics of snow at multiple scales is imperative to understanding the broader ecological role of snow in this region. High-resolution satellite imagery acquired during the 2009–2010 and 2010–2011 austral summers was used to quantify the distribution of snow across Taylor and Wright Valleys. Extracted snow-covered area from the imagery was used as the basis for assessing seasonal variability and seasonal controls on accumulation and ablation of snow at multiple scales. In addition, fifteen 1 km2 plots (3 in each of 5 study regions) were selected to assess the prevalence of snow cover at finer spatial scales. Results confirm that snow patches tend to form in the same locations each year with some minor deviations observed. At the snow-patch scale, neighboring patches often exhibit considerable differences in aerial ablation rates, and particular snow patches do not reflect trends for snow-covered area observed at the landscape scale. These differences are presumably related to microtopographic influences over snow depth and exposure. This highlights the importance of both the landscape and snow-patch scales in assessing the effects of snow cover on biogeochemical cycling and microbial communities.


Sign in / Sign up

Export Citation Format

Share Document