Towards a scale-independent fractional snow-covered area parameterization for complex terrain

Author(s):  
Nora Helbig ◽  
Yves Bühler ◽  
Lucie Eberhard ◽  
César Deschamps-Berger ◽  
Simon Gascoin ◽  
...  

<p>Whenever there is snow on the ground, there will be large spatial variability in snow depth. The spatial distribution of snow is significantly influenced by topography due to wind, precipitation, shortwave and longwave radiation, and even snow avalanches relocate the accumulated snow. Fractional snow-covered area (fSCA) is an important model parameter characterizing the fraction of the ground surface that is covered by snow and is crucial for various model applications such as weather forecasts, climate simulations and hydrological modeling.</p><p>We recently suggested an empirical fSCA parameterization based on two spatial snow depth data sets acquired at peak of winter in Switzerland and Spain, which yielded best performance for spatial scales larger than 1000 m. However, this parameterization was not validated on independent snow depth data. To evaluate and improve our fSCA parameterization, in particular with regards to other spatial scales and snow climates (or geographic regions), we used spatial snow depth data sets form a wide range of mountain ranges in USA, Switzerland and France acquired by 5 different measuring methods. Pooling all snow depth data sets suggests that a scale-dependent parameter should be introduced to improve the fSCA parameterization, in particular for sub-kilometer spatial scales. Extending our empirical fSCA parameterization to a broader range of scales and snow climates is an important step towards accounting for spatio-temporal variability in snow depth in multiple snow model applications.</p>

2021 ◽  
Vol 15 (2) ◽  
pp. 615-632
Author(s):  
Nora Helbig ◽  
Yves Bühler ◽  
Lucie Eberhard ◽  
César Deschamps-Berger ◽  
Simon Gascoin ◽  
...  

Abstract. The spatial distribution of snow in the mountains is significantly influenced through interactions of topography with wind, precipitation, shortwave and longwave radiation, and avalanches that may relocate the accumulated snow. One of the most crucial model parameters for various applications such as weather forecasts, climate predictions and hydrological modeling is the fraction of the ground surface that is covered by snow, also called fractional snow-covered area (fSCA). While previous subgrid parameterizations for the spatial snow depth distribution and fSCA work well, performances were scale-dependent. Here, we were able to confirm a previously established empirical relationship of peak of winter parameterization for the standard deviation of snow depth σHS by evaluating it with 11 spatial snow depth data sets from 7 different geographic regions and snow climates with resolutions ranging from 0.1 to 3 m. An enhanced performance (mean percentage errors, MPE, decreased by 25 %) across all spatial scales ≥ 200 m was achieved by recalibrating and introducing a scale-dependency in the dominant scaling variables. Scale-dependent MPEs vary between −7 % and 3 % for σHS and between 0 % and 1 % for fSCA. We performed a scale- and region-dependent evaluation of the parameterizations to assess the potential performances with independent data sets. This evaluation revealed that for the majority of the regions, the MPEs mostly lie between ±10 % for σHS and between −1 % and 1.5 % for fSCA. This suggests that the new parameterizations perform similarly well in most geographical regions.


2020 ◽  
Author(s):  
Nora Helbig ◽  
Yves Bühler ◽  
Lucie Eberhard ◽  
César Deschamps-Berger ◽  
Simon Gascoin ◽  
...  

Abstract. The spatial distribution of snow in the mountains is significantly influenced through interactions of topography with wind, precipitation, shortwave and longwave radiation, and avalanches that may relocate the accumulated snow. One of the most crucial model parameters for various applications such as weather forecasts, climate predictions and in hydrological modeling is the fraction of the ground surface that is covered by snow, also called fractional snow-covered area (fSCA). While previous subgrid parameterizations for the spatial snow depth distribution and fSCA work well, performances were scale-dependent. Here, we were able to confirm a previously established empirical relationship of the peak of winter parameterization for the standard deviation of snow depth σ>sub>HS by evaluating it on 11 spatial snow depth data sets from 7 different geographic regions and snow climates with resolutions ranging from 0.1 m to 3 m. Enhanced performance (mean percentage errors (MPE) decreased by 25 %) across all spatial scales ≥ 200 m was achieved by recalibrating and introducing a scale-dependency in the dominant scaling variables. Scale-dependent MPEs vary between −7 % and 3 % for σ>sub>HS and between 0 % and 1 % for fSCA. A scale- as well as region-dependent evaluation revealed that for the majority of the regions the MPEs mostly lie between ±10 % for σ>sub>HS and between −1 % and 1.5 % for fSCA. This suggests that the new parameterizations perform similarly well in most geographical regions.


2021 ◽  
Vol 15 (9) ◽  
pp. 4607-4624
Author(s):  
Nora Helbig ◽  
Michael Schirmer ◽  
Jan Magnusson ◽  
Flavia Mäder ◽  
Alec van Herwijnen ◽  
...  

Abstract. The snow cover spatial variability in mountainous terrain changes considerably over the course of a snow season. In this context, fractional snow-covered area (fSCA) is an essential model parameter characterizing how much ground surface in a grid cell is currently covered by snow. We present a seasonal fSCA algorithm using a recent scale-independent fSCA parameterization. For the seasonal implementation, we track snow depth (HS) and snow water equivalent (SWE) and account for several alternating accumulation–ablation phases. Besides tracking HS and SWE, the seasonal fSCA algorithm only requires subgrid terrain parameters from a fine-scale summer digital elevation model. We implemented the new algorithm in a multilayer energy balance snow cover model. To evaluate the spatiotemporal changes in modeled fSCA, we compiled three independent fSCA data sets derived from airborne-acquired fine-scale HS data and from satellite and terrestrial imagery. Overall, modeled daily 1 km fSCA values had normalized root mean square errors of 7 %, 12 % and 21 % for the three data sets, and some seasonal trends were identified. Comparing our algorithm performances to the performances of the CLM5.0 fSCA algorithm implemented in the multilayer snow cover model demonstrated that our full seasonal fSCA algorithm better represented seasonal trends. Overall, the results suggest that our seasonal fSCA algorithm can be applied in other geographic regions by any snow model application.


2017 ◽  
Vol 11 (1) ◽  
pp. 585-607 ◽  
Author(s):  
Anna Haberkorn ◽  
Nander Wever ◽  
Martin Hoelzle ◽  
Marcia Phillips ◽  
Robert Kenner ◽  
...  

Abstract. In this study we modelled the influence of the spatially and temporally heterogeneous snow cover on the surface energy balance and thus on rock temperatures in two rugged, steep rock walls on the Gemsstock ridge in the central Swiss Alps. The heterogeneous snow depth distribution in the rock walls was introduced to the distributed, process-based energy balance model Alpine3D with a precipitation scaling method based on snow depth data measured by terrestrial laser scanning. The influence of the snow cover on rock temperatures was investigated by comparing a snow-covered model scenario (precipitation input provided by precipitation scaling) with a snow-free (zero precipitation input) one. Model uncertainties are discussed and evaluated at both the point and spatial scales against 22 near-surface rock temperature measurements and high-resolution snow depth data from winter terrestrial laser scans.In the rough rock walls, the heterogeneously distributed snow cover was moderately well reproduced by Alpine3D with mean absolute errors ranging between 0.31 and 0.81 m. However, snow cover duration was reproduced well and, consequently, near-surface rock temperatures were modelled convincingly. Uncertainties in rock temperature modelling were found to be around 1.6 °C. Errors in snow cover modelling and hence in rock temperature simulations are explained by inadequate snow settlement due to linear precipitation scaling, missing lateral heat fluxes in the rock, and by errors caused by interpolation of shortwave radiation, wind and air temperature into the rock walls.Mean annual near-surface rock temperature increases were both measured and modelled in the steep rock walls as a consequence of a thick, long-lasting snow cover. Rock temperatures were 1.3–2.5 °C higher in the shaded and sunny rock walls, while comparing snow-covered to snow-free simulations. This helps to assess the potential error made in ground temperature modelling when neglecting snow in steep bedrock.


2017 ◽  
Author(s):  
Hanneke Luijting ◽  
Dagrun Vikhamar-Schuler ◽  
Trygve Aspelien ◽  
Mariken Homleid

Abstract. In Norway, thirty percent of the annual precipitation falls as snow. Knowledge of the snow reservoir is therefore important for energy production and water resource management. The land surface model SURFEX with the detailed snowpack scheme Crocus (SURFEX/Crocus) has been run with a grid spacing of approximately 1 km over an area in southern Norway for two years (01 September 2014–31 August 2016), using two different forcing data sets: 1) hourly meteorological forecasts from the operational weather forecast model AROME MetCoOp (2.5 km grid spacing), and 2) gridded hourly observations of temperature and precipitation (1 km grid spacing) in combination with the meteorological forecasts from AROME MetCoOp. We present an evaluation of the modeled snow depth and snow cover, as compared to point observations of snow depth and to MODIS satellite images of the snow-covered area. The evaluation focuses on snow accumulation and snow melt. The results are promising. Both experiments are capable of simulating the snow pack over the two winter seasons, but there is an overestimation of snow depth when using only meteorological forecasts from AROME MetCoOp, although the snow-covered area throughout the melt season is better represented by this experiment. The errors, when using AROME MetCoOp as forcing, accumulate over the snow season, showing that assimilation of snow depth observations into SURFEX/Crocus might be necessary when using only meteorological forecasts as forcing. When using gridded observations, the simulation of snow depth is significantly improved, which shows that using a combination of gridded observations and meteorological forecasts to force a snowpack model is very useful and can give better results than only using meteorological forecasts. There is however an underestimation of snow ablation in both experiments. This is mainly due to the absence of wind-induced erosion of snow in the SURFEX/Crocus model, underestimated snow melt and biases in the forcing data.


2020 ◽  
Vol 14 (2) ◽  
pp. 751-767
Author(s):  
Shiming Xu ◽  
Lu Zhou ◽  
Bin Wang

Abstract. Satellite and airborne remote sensing provide complementary capabilities for the observation of the sea ice cover. However, due to the differences in footprint sizes and noise levels of the measurement techniques, as well as sea ice's variability across scales, it is challenging to carry out inter-comparison or consistently study these observations. In this study we focus on the remote sensing of sea ice thickness parameters and carry out the following: (1) the analysis of variability and its statistical scaling for typical parameters and (2) the consistency study between airborne and satellite measurements. By using collocating data between Operation IceBridge and CryoSat-2 (CS-2) in the Arctic, we show that consistency exists between the variability in radar freeboard estimations, although CryoSat-2 has higher noise levels. Specifically, we notice that the noise levels vary among different CryoSat-2 products, and for the European Space Agency (ESA) CryoSat-2 freeboard product the noise levels are at about 14 and 20 cm for first-year ice (FYI) and multi-year ice (MYI), respectively. On the other hand, for Operation IceBridge and NASA's Ice, Cloud, and land Elevation Satellite (ICESat), it is shown that the variability in snow (or total) freeboard is quantitatively comparable despite more than a 5-year time difference between the two datasets. Furthermore, by using Operation IceBridge data, we also find widespread negative covariance between ice freeboard and snow depth, which only manifests on small spatial scales (40 m for first-year ice and about 80 to 120 m for multi-year ice). This statistical relationship highlights that the snow cover reduces the overall topography of the ice cover. Besides this, there is prevalent positive covariability between snow depth and snow freeboard across a wide range of spatial scales. The variability and consistency analysis calls for more process-oriented observations and modeling activities to elucidate key processes governing snow–ice interaction and sea ice variability on various spatial scales. The statistical results can also be utilized in improving both radar and laser altimetry as well as the validation of sea ice and snow prognostic models.


2014 ◽  
Vol 8 (4) ◽  
pp. 3665-3698 ◽  
Author(s):  
T. Grünewald ◽  
Y. Bühler ◽  
M. Lehning

Abstract. Elevation strongly affects quantity and distribution of precipitation and snow. Positive elevation gradients were identified by many studies, usually based on data from sparse precipitation stations or snow depth measurements. We present a systematic evaluation of the elevation – snow depth relationship. We analyse areal snow depth data obtained by remote sensing for seven mountain sites. Snow depths were averaged to 100 m elevation bands and then related to their respective elevation level. The assessment was performed at three scales ranging from the complete data sets by km-scale sub-catchments to slope transects. We show that most elevation – snow depth curves at all scales are characterised through a single shape. Mean snow depths increase with elevation up to a certain level where they have a distinct peak followed by a decrease at the highest elevations. We explain this typical shape with a generally positive elevation gradient of snow fall that is modified by the interaction of snow cover and topography. These processes are preferential deposition of precipitation and redistribution of snow by wind, sloughing and avalanching. Furthermore we show that the elevation level of the peak of mean snow depth correlates with the dominant elevation level of rocks.


2021 ◽  
Author(s):  
Nora Helbig ◽  
Michael Schirmer ◽  
Jan Magnusson ◽  
Flavia Mäder ◽  
Alec van Herwijnen ◽  
...  

Abstract. The snow cover spatial variability in mountainous terrain changes considerably over the course of a snow season. In this context, fractional snow-covered area (fSCA) is therefore an essential model parameter characterizing how much of the ground surface in a grid cell is currently covered by snow. We present a seasonal fSCA algorithm using a recent scale-independent fSCA parameterization. For the seasonal implementation we track snow depth (HS) and snow water equivalent (SWE) and account for several alternating accumulation-ablation phases. Besides tracking HS and SWE, the seasonal fSCA algorithm only requires computing subgrid terrain parameters from a fine-scale summer digital elevation model. We implemented the new algorithm in a multilayer energy balance snow cover model. For a spatiotemporal evaluation of modelled fSCA we compiled three independent fSCA data sets. Evaluating modelled 1 km fSCA seasonally with fSCA derived from airborne-acquired fine-scale HS data, satellite- as well as terrestrial camera-derived fSCA showed overall normalized root mean square errors of respectively 9 %, 20 % and 22 %, and represented seasonal trends well. The overall good model performance suggests that the seasonal fSCA algorithm can be applied in other geographic regions by any snow model application.


2016 ◽  
Vol 20 (12) ◽  
pp. 5049-5062 ◽  
Author(s):  
Matteo Giuliani ◽  
Andrea Castelletti ◽  
Roman Fedorov ◽  
Piero Fraternali

Abstract. Snow is a key component of the hydrologic cycle in many regions of the world. Despite recent advances in environmental monitoring that are making a wide range of data available, continuous snow monitoring systems that can collect data at high spatial and temporal resolution are not well established yet, especially in inaccessible high-latitude or mountainous regions. The unprecedented availability of user-generated data on the web is opening new opportunities for enhancing real-time monitoring and modeling of environmental systems based on data that are public, low-cost, and spatiotemporally dense. In this paper, we contribute a novel crowdsourcing procedure for extracting snow-related information from public web images, either produced by users or generated by touristic webcams. A fully automated process fetches mountain images from multiple sources, identifies the peaks present therein, and estimates virtual snow indexes representing a proxy of the snow-covered area. Our procedure has the potential for complementing traditional snow-related information, minimizing costs and efforts for obtaining the virtual snow indexes and, at the same time, maximizing the portability of the procedure to several locations where such public images are available. The operational value of the obtained virtual snow indexes is assessed for a real-world water-management problem, the regulation of Lake Como, where we use these indexes for informing the daily operations of the lake. Numerical results show that such information is effective in extending the anticipation capacity of the lake operations, ultimately improving the system performance.


2014 ◽  
Vol 8 (6) ◽  
pp. 2381-2394 ◽  
Author(s):  
T. Grünewald ◽  
Y. Bühler ◽  
M. Lehning

Abstract. Elevation strongly affects quantity and distribution patterns of precipitation and snow. Positive elevation gradients were identified by many studies, usually based on data from sparse precipitation stations or snow depth measurements. We present a systematic evaluation of the elevation–snow depth relationship. We analyse areal snow depth data obtained by remote sensing for seven mountain sites near to the time of the maximum seasonal snow accumulation. Snow depths were averaged to 100 m elevation bands and then related to their respective elevation level. The assessment was performed at three scales: (i) the complete data sets (10 km scale), (ii) sub-catchments (km scale) and (iii) slope transects (100 m scale). We show that most elevation–snow depth curves at all scales are characterised through a single shape. Mean snow depths increase with elevation up to a certain level where they have a distinct peak followed by a decrease at the highest elevations. We explain this typical shape with a generally positive elevation gradient of snow fall that is modified by the interaction of snow cover and topography. These processes are preferential deposition of precipitation and redistribution of snow by wind, sloughing and avalanching. Furthermore, we show that the elevation level of the peak of mean snow depth correlates with the dominant elevation level of rocks (if present).


Sign in / Sign up

Export Citation Format

Share Document