scholarly journals Terrain changes from images acquired on opportunistic flights by SFM photogrammetry

Author(s):  
Luc Girod ◽  
Christopher Nuth ◽  
Andreas Kääb ◽  
Bernd Etzelmüller ◽  
Jack Kohler

Abstract. Structure from motion (SfM) photogrammetric techniques are emerging as powerful tools for surveying, at very high spatial and temporal resolution, geomorphological objects undergoing relatively rapid change, such as glaciers, moraines, or landslides. Modern software and computing power allows production of accurate data from low-cost surveys, compared to traditional photogrammetry conducted from dedicated fixed-wing aircraft missions. We present a method to take advantage of light-transport flights conducting other missions to opportunistically collect imagery for geomorphological analysis. We test and validate an approach in which we attach simple cameras and GNSS receivers to a helicopter to collect data when the flight path covers an area of interest. The novelty in our method is the ability to link GNSS data to images without a physical or electronic link. As a proof of concept, we conducted two test surveys in September 2014 and 2015 over the glacier Midtre Lovénbreen and its forefield, in northwestern Svalbard. We were able to derive elevation change estimates complementing in-situ mass balance measurements using the glaciological method. Furthermore, we detect and analyze a number of processes in the proglacial area, including thermokarst and the evolution of water channels.

2017 ◽  
Vol 11 (2) ◽  
pp. 827-840 ◽  
Author(s):  
Luc Girod ◽  
Christopher Nuth ◽  
Andreas Kääb ◽  
Bernd Etzelmüller ◽  
Jack Kohler

Abstract. Acquiring data to analyse change in topography is often a costly endeavour requiring either extensive, potentially risky, fieldwork and/or expensive equipment or commercial data. Bringing the cost down while keeping the precision and accuracy has been a focus in geoscience in recent years. Structure from motion (SfM) photogrammetric techniques are emerging as powerful tools for surveying, with modern algorithm and large computing power allowing for the production of accurate and detailed data from low-cost, informal surveys. The high spatial and temporal resolution permits the monitoring of geomorphological features undergoing relatively rapid change, such as glaciers, moraines, or landslides. We present a method that takes advantage of light-transport flights conducting other missions to opportunistically collect imagery for geomorphological analysis. We test and validate an approach in which we attach a consumer-grade camera and a simple code-based Global Navigation Satellite System (GNSS) receiver to a helicopter to collect data when the flight path covers an area of interest. Our method is based and builds upon Welty et al. (2013), showing the ability to link GNSS data to images without a complex physical or electronic link, even with imprecise camera clocks and irregular time lapses. As a proof of concept, we conducted two test surveys, in September 2014 and 2015, over the glacier Midtre Lovénbreen and its forefield, in northwestern Svalbard. We were able to derive elevation change estimates comparable to in situ mass balance stake measurements. The accuracy and precision of our DEMs allow detection and analysis of a number of processes in the proglacial area, including the presence of thermokarst and the evolution of water channels.


Author(s):  
Pooria Najarbashi ◽  
Mahmoud Naderi

Concrete strength represents by far the most critical property of concrete. It represents the mechanical properties of concrete. On-site evaluation of concrete strength remains the fundamental challenge in the condition assessment of existing infrastructure. Although standard laboratory methods can be typically used but most of these testing methods are costly and time-consuming. Among the in-situ methods, the “twist-off ” method with very slight damage is genuinely a convenient, fast and also low-cost technique that provides accurate results for engineers. In this study, the twist-offmethod has been used for the assessment of in-situ strength of the 30 concrete structures in Qazvin in Iran. The results showed structures studied had a strength of 45 to 600 kg/cm2 and the average is about 200 kg/cm2. The observed variation is very high, as well as a significant difference between the compressive strength of the columns, and the floors of the buildings that all indicate non-standard concrete mixing and inadequate control over construction. However, according to the past experience and results of the samples, some recommendations in this regard have been suggested.


ACTA IMEKO ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 10
Author(s):  
Valerio Baiocchi ◽  
Alessandro Bosman ◽  
Gino Dardanelli ◽  
Francesca Giannone

<p class="Abstract">Differential GNSS positioning on vessels is of considerable interest in various fields of application as navigation aids, precision positioning for geophysical surveys or sampling purposes especially when high resolution bathymetric surveys are conducted. However ship positioning must be considered a kinematic survey with all the associated problems. The possibility of using high-precision differential GNSS receivers in navigation is of increasing interest, also due to the very recent availability of low-cost differential receivers that may soon replace classic navigation ones based on the less accurate point positioning technique. The availability of greater plano-altimetric accuracy, however, requires an increasingly better understanding of planimetric and altimetric reference systems. In particular, the results allow preliminary considerations on the congruence between terrestrial reference systems (which the GNSS survey can easily refer to) and marine reference systems (connected to National Tidegauge Network). In spite of the fluctuations due to the physiological continuous variation of the ship's attitude, GNSS plot faithfully followed the trend of the tidal variations and highlighted the shifts between GNSS plot and the tide gauges due to the different materialization of the relative reference systems.</p><p class="Abstract"><span lang="EN-US"><br /></span></p>


Author(s):  
Y. L. Chen ◽  
S. Fujlshiro

Metastable beta titanium alloys have been known to have numerous advantages such as cold formability, high strength, good fracture resistance, deep hardenability, and cost effectiveness. Very high strength is obtainable by precipitation of the hexagonal alpha phase in a bcc beta matrix in these alloys. Precipitation hardening in the metastable beta alloys may also result from the formation of transition phases such as omega phase. Ti-15-3 (Ti-15V- 3Cr-3Al-3Sn) has been developed recently by TIMET and USAF for low cost sheet metal applications. The purpose of the present study was to examine the aging characteristics in this alloy.The composition of the as-received material is: 14.7 V, 3.14 Cr, 3.05 Al, 2.26 Sn, and 0.145 Fe. The beta transus temperature as determined by optical metallographic method was about 770°C. Specimen coupons were prepared from a mill-annealed 1.2 mm thick sheet, and solution treated at 827°C for 2 hr in argon, then water quenched. Aging was also done in argon at temperatures ranging from 316 to 616°C for various times.


Author(s):  
Jian-Shing Luo ◽  
Hsiu Ting Lee

Abstract Several methods are used to invert samples 180 deg in a dual beam focused ion beam (FIB) system for backside milling by a specific in-situ lift out system or stages. However, most of those methods occupied too much time on FIB systems or requires a specific in-situ lift out system. This paper provides a novel transmission electron microscopy (TEM) sample preparation method to eliminate the curtain effect completely by a combination of backside milling and sample dicing with low cost and less FIB time. The procedures of the TEM pre-thinned sample preparation method using a combination of sample dicing and backside milling are described step by step. From the analysis results, the method has applied successfully to eliminate the curtain effect of dual beam FIB TEM samples for both random and site specific addresses.


Author(s):  
Femi Robert

Background: Switches are important component in electrical system. The switches needs to have the advantages of low ON-state resistance, very high OFF-state resistance, high isolation, no leakage current, less power loss, fast switching, high linearity, small size, arcless and low cost in bulk production. Also these switches have to be reliable and environmental friendly. Methods: In this paper, macro and microswitches for power applications are extensively reviewed and summarized. Various types of switches such as mechanical, solid-state, hybrid and micromechanical switches have been used for power applications are reviewed. The importance and challenge in achieving arcless switching is presented. Results: The use of micromechanical switches for power applications, actuation techniques, switching modes, reliability and lifetime are also reviewed. The modeling and design challenges are also reviewed. Conclusion: The applications of micromechanical switches shows that the switches can reduce the leakage current in battery operated systems and reduce the size of the system considerably.


2019 ◽  
Author(s):  
Nikki Theofanopoulou ◽  
Katherine Isbister ◽  
Julian Edbrooke-Childs ◽  
Petr Slovák

BACKGROUND A common challenge within psychiatry and prevention science more broadly is the lack of effective, engaging, and scale-able mechanisms to deliver psycho-social interventions for children, especially beyond in-person therapeutic or school-based contexts. Although digital technology has the potential to address these issues, existing research on technology-enabled interventions for families remains limited. OBJECTIVE The aim of this pilot study was to examine the feasibility of in-situ deployments of a low-cost, bespoke prototype, which has been designed to support children’s in-the-moment emotion regulation efforts. This prototype instantiates a novel intervention model that aims to address the existing limitations by delivering the intervention through an interactive object (a ‘smart toy’) sent home with the child, without any prior training necessary for either the child or their carer. This pilot study examined (i) engagement and acceptability of the device in the homes during 1 week deployments; and (ii) qualitative indicators of emotion regulation effects, as reported by parents and children. METHODS In this qualitative study, ten families (altogether 11 children aged 6-10 years) were recruited from three under-privileged communities in the UK. The RA visited participants in their homes to give children the ‘smart toy’ and conduct a semi-structured interview with at least one parent from each family. Children were given the prototype, a discovery book, and a simple digital camera to keep at home for 7-8 days, after which we interviewed each child and their parent about their experience. Thematic analysis guided the identification and organisation of common themes and patterns across the dataset. In addition, the prototypes automatically logged every interaction with the toy throughout the week-long deployments. RESULTS Across all 10 families, parents and children reported that the ‘smart toy’ was incorporated into children’s emotion regulation practices and engaged with naturally in moments children wanted to relax or calm down. Data suggests that children interacted with the toy throughout the duration of the deployment, found the experience enjoyable, and all requested to keep the toy longer. Child emotional connection to the toy—caring for its ‘well-being’—appears to have driven this strong engagement. Parents reported satisfaction with and acceptability of the toy. CONCLUSIONS This is the first known study investigation of the use of object-enabled intervention delivery to support emotion regulation in-situ. The strong engagement and qualitative indications of effects are promising – children were able to use the prototype without any training and incorporated it into their emotion regulation practices during daily challenges. Future work is needed to extend this indicative data with efficacy studies examining the psychological efficacy of the proposed intervention. More broadly, our findings suggest the potential of a technology-enabled shift in how prevention interventions are designed and delivered: empowering children and parents through ‘child-led, situated interventions’, where participants learn through actionable support directly within family life, as opposed to didactic in-person workshops and a subsequent skills application.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yongmeng Wu ◽  
Cuibo Liu ◽  
Changhong Wang ◽  
Yifu Yu ◽  
Yanmei Shi ◽  
...  

AbstractElectrocatalytic alkyne semi-hydrogenation to alkenes with water as the hydrogen source using a low-cost noble-metal-free catalyst is highly desirable but challenging because of their over-hydrogenation to undesired alkanes. Here, we propose that an ideal catalyst should have the appropriate binding energy with active atomic hydrogen (H*) from water electrolysis and a weaker adsorption with an alkene, thus promoting alkyne semi-hydrogenation and avoiding over-hydrogenation. So, surface sulfur-doped and -adsorbed low-coordinated copper nanowire sponges are designedly synthesized via in situ electroreduction of copper sulfide and enable electrocatalytic alkyne semi-hydrogenation with over 99% selectivity using water as the hydrogen source, outperforming a copper counterpart without surface sulfur. Sulfur anion-hydrated cation (S2−-K+(H2O)n) networks between the surface adsorbed S2− and K+ in the KOH electrolyte boost the production of active H* from water electrolysis. And the trace doping of sulfur weakens the alkene adsorption, avoiding over-hydrogenation. Our catalyst also shows wide substrate scopes, up to 99% alkenes selectivity, good reducible groups compatibility, and easily synthesized deuterated alkenes, highlighting the promising potential of this method.


2020 ◽  
Vol 14 (2) ◽  
pp. 167-175
Author(s):  
Li Zhang ◽  
Volker Schwieger

AbstractThe investigations on low-cost single frequency GNSS receivers at the Institute of Engineering Geodesy (IIGS) show that u-blox GNSS receivers combined with low-cost antennas and self-constructed L1-optimized choke rings can reach an accuracy which almost meets the requirements of geodetic applications (see Zhang and Schwieger [25]). However, the quality (accuracy and reliability) of low-cost GNSS receiver data should still be improved, particularly in environments with obstructions. The multipath effects are a major error source for the short baselines. The ground plate or the choke ring ground plane can reduce the multipath signals from the horizontal reflector (e. g. ground). However, the shieldings cannot reduce the multipath signals from the vertical reflectors (e. g. walls).Because multipath effects are spatially and temporally correlated, an algorithm is developed for reducing the multipath effect by considering the spatial correlations of the adjoined stations (see Zhang and Schwieger [24]). In this paper, an algorithm based on the temporal correlations will be introduced. The developed algorithm is based on the periodic behavior of the estimated coordinates and not on carrier phase raw data, which is easy to use. Because, for the users, coordinates are more accessible than the raw data. The multipath effect can cause periodic oscillations but the periods change over time. Besides this, the multipath effect’s influence on the coordinates is a mixture of different multipath signals from different satellites and different reflectors. These two properties will be used to reduce the multipath effect. The algorithm runs in two steps and iteratively. Test measurements were carried out in a multipath intensive environment; the accuracies of the measurements are improved by about 50 % and the results can be delivered in near-real-time (in ca. 30 minutes), therefore the algorithm is suitable for structural health monitoring applications.


Sign in / Sign up

Export Citation Format

Share Document