scholarly journals Review of 'Surface energy balance sensitivity to meteorological variability on Haig Glacier, Canadian Rocky Mountains'

2016 ◽  
Author(s):  
Anonymous
2016 ◽  
Author(s):  
S. Ebrahimi ◽  
S. J. Marshall

Abstract. Energy exchanges between the atmosphere and the glacier surface control the net energy available for snow and ice melt. Meteorological and glaciological observations are not always available to measure glacier energy and mass balance directly, so models of energy balance processes are often necessary to understand glacier response to meteorological variability and climate change. This paper explores the theoretical and empirical response of a mid-latitude glacier in the Canadian Rocky Mountains to the daily and interannual variations in the meteorological parameters that govern the surface energy balance. The model's reference conditions are based on 11 years of in situ observations from an automatic weather station at an elevation of 2660 m, in the upper ablation area of Haig Glacier. We use an energy balance model to run sensitivity tests to perturbations in temperature, specific humidity, wind speed, incoming shortwave radiation, and glacier surface albedo. The variables were perturbed one at a time for the duration of the glacier melt season, May to September, for the years 2002–2012. The experiments indicate that summer melt has the strongest sensitivity to interannual variations in incoming shortwave radiation, albedo, and temperature, in that order. To explore more realistic scenarios where meteorological variables and internal feedbacks such as the surface albedo co-evolve, we use the same perturbation approach using meteorological forcing from the North American Regional Reanalysis (NARR) over the period 1979–2014. These experiments provide an estimate of historical variability in Haig Glacier surface energy balance an d melt for years prior to our observational study. The methods introduced in this paper provide a methodology that can be employed in distributed energy balance modelling at regional scales. They also provide the foundation for theoretical framework that can be adapted to compare the climatic sensitivity of glaciers in different climate regimes, e.g., polar, maritime, or tropical environments.


2016 ◽  
Vol 10 (6) ◽  
pp. 2799-2819 ◽  
Author(s):  
Samaneh Ebrahimi ◽  
Shawn J. Marshall

Abstract. Energy exchanges between the atmosphere and the glacier surface control the net energy available for snow and ice melt. This paper explores the response of a midlatitude glacier in the Canadian Rocky Mountains to daily and interannual variations in the meteorological parameters that govern the surface energy balance. We use an energy balance model to run sensitivity tests to perturbations in temperature, specific humidity, wind speed, incoming shortwave radiation, glacier surface albedo, and winter snowpack depth. Variables are perturbed (i) in isolation, (ii) including internal feedbacks, and (iii) with co-evolution of meteorological perturbations, derived from the North American regional climate reanalysis (NARR) over the period 1979–2014. Summer melt at this site has the strongest sensitivity to interannual variations in temperature, albedo, and specific humidity, while fluctuations in cloud cover, wind speed, and winter snowpack depth have less influence. Feedbacks to temperature forcing, in particular summer albedo evolution, double the melt sensitivity to a temperature change. When meteorological perturbations covary through the NARR forcing, summer temperature anomalies remain important in driving interannual summer energy balance and melt variability, but they are reduced in importance relative to an isolated temperature forcing. Covariation of other variables (e.g., clear skies, giving reduced incoming longwave radiation) may be partially compensating for the increase in temperature. The methods introduced in this paper provide a framework that can be extended to compare the sensitivity of glaciers in different climate regimes, e.g., polar, maritime, or tropical environments, and to assess the importance of different meteorological parameters in different regions.


2021 ◽  
pp. 1-19
Author(s):  
Rebecca L. Stewart ◽  
Matthew Westoby ◽  
Francesca Pellicciotti ◽  
Ann Rowan ◽  
Darrel Swift ◽  
...  

Abstract Surface energy-balance models are commonly used in conjunction with satellite thermal imagery to estimate supraglacial debris thickness. Removing the need for local meteorological data in the debris thickness estimation workflow could improve the versatility and spatiotemporal application of debris thickness estimation. We evaluate the use of regional reanalysis data to derive debris thickness for two mountain glaciers using a surface energy-balance model. Results forced using ERA-5 agree with AWS-derived estimates to within 0.01 ± 0.05 m for Miage Glacier, Italy, and 0.01 ± 0.02 m for Khumbu Glacier, Nepal. ERA-5 data were then used to estimate spatiotemporal changes in debris thickness over a ~20-year period for Miage Glacier, Khumbu Glacier and Haut Glacier d'Arolla, Switzerland. We observe significant increases in debris thickness at the terminus for Haut Glacier d'Arolla and at the margins of the expanding debris cover at all glaciers. While simulated debris thickness was underestimated compared to point measurements in areas of thick debris, our approach can reconstruct glacier-scale debris thickness distribution and its temporal evolution over multiple decades. We find significant changes in debris thickness over areas of thin debris, areas susceptible to high ablation rates, where current knowledge of debris evolution is limited.


2020 ◽  
pp. 1-16
Author(s):  
Tim Hill ◽  
Christine F. Dow ◽  
Eleanor A. Bash ◽  
Luke Copland

Abstract Glacier surficial melt rates are commonly modelled using surface energy balance (SEB) models, with outputs applied to extend point-based mass-balance measurements to regional scales, assess water resource availability, examine supraglacial hydrology and to investigate the relationship between surface melt and ice dynamics. We present an improved SEB model that addresses the primary limitations of existing models by: (1) deriving high-resolution (30 m) surface albedo from Landsat 8 imagery, (2) calculating shadows cast onto the glacier surface by high-relief topography to model incident shortwave radiation, (3) developing an algorithm to map debris sufficiently thick to insulate the glacier surface and (4) presenting a formulation of the SEB model coupled to a subsurface heat conduction model. We drive the model with 6 years of in situ meteorological data from Kaskawulsh Glacier and Nàłùdäy (Lowell) Glacier in the St. Elias Mountains, Yukon, Canada, and validate outputs against in situ measurements. Modelled seasonal melt agrees with observations within 9% across a range of elevations on both glaciers in years with high-quality in situ observations. We recommend applying the model to investigate the impacts of surface melt for individual glaciers when sufficient input data are available.


2008 ◽  
Vol 47 (3) ◽  
pp. 819-834 ◽  
Author(s):  
Timothy M. Barzyk ◽  
John E. Frederick

Abstract Individual structures within the same local-scale (102–104 m) environment may experience different microscale (<103 m) climates. Urban microclimate variations are often a result of site-specific features, including spatial and material characteristics of surfaces and surrounding structures. A semiempirical surface energy balance model is presented that incorporates radiative and meteorological measurements to statistically parameterize energy fluxes that are not measured directly, including sensible heat transport, storage heat flux through conduction, and evaporation (assumed to be negligible under dry conditions). Two Chicago rooftops were chosen for detailed study. The City Hall site was located in an intensely developed urban area characterized by close-set high-rise buildings. The University rooftop was in a highly developed area characterized by three- to seven-story buildings of stone, concrete, and brick construction. Two identical sets of instruments recorded measurements contemporaneously from these rooftops during summer 2005, and results from the week of 29 July to 5 August are presented here. The model explains 83.7% and 96% of the variance for the City Hall and University sites, respectively. Results apply to a surface area of approximately 1260 m2, at length scales similar to the dimensions of built structures and other urban elements. A site intercomparison revealed variations in surface energy balance components caused by site-specific features and demonstrated the relevance of the model to urban applications.


2009 ◽  
Vol 28 (1) ◽  
pp. 51-64 ◽  
Author(s):  
Luis Octavio Lagos ◽  
Derrel L. Martin ◽  
Shashi B. Verma ◽  
Andrew Suyker ◽  
Suat Irmak

Sign in / Sign up

Export Citation Format

Share Document