scholarly journals Modelled subglacial floods and tunnel valleys control the lifecycle of transitory ice streams

2018 ◽  
Author(s):  
Thomas Lelandais ◽  
Édouard Ravier ◽  
Stéphane Pochat ◽  
Olivier Bourgeois ◽  
Christopher D. Clark ◽  
...  

Abstract. Ice streams are corridors of fast-flowing ice that control mass transfers from continental ice sheets to oceans. Their flow speeds are known to accelerate and decelerate, their activity to switch on and off, and even their locations to shift entirely. Our analogue physical experiments reveal that a lifecycle incorporating evolving subglacial meltwater routing and bed erosion can govern this complex transitory behaviour. The model ice streams switch on when subglacial water pockets drain as marginal outburst floods. Then they decelerate as basal coupling increases as a consequence of the lubricating water drainage system spontaneously organising itself into channels that erode tunnel valleys. They surge or jump in location when these water drainage systems maintain low discharge but they ultimately switch off when tunnel valleys have expanded to develop efficient drainage systems. Beyond reconciling previously disconnected observations of modern and ancient ice streams into a single lifecycle, the modelling suggests that tunnel valley development may be crucial in stabilising portions of ice sheets during periods of climate change.

2018 ◽  
Vol 12 (8) ◽  
pp. 2759-2772 ◽  
Author(s):  
Thomas Lelandais ◽  
Édouard Ravier ◽  
Stéphane Pochat ◽  
Olivier Bourgeois ◽  
Christopher Clark ◽  
...  

Abstract. Ice streams are corridors of fast-flowing ice that control mass transfers from continental ice sheets to oceans. Their flow speeds are known to accelerate and decelerate, their activity can switch on and off, and even their locations can shift entirely. Our analogue physical experiments reveal that a life cycle incorporating evolving subglacial meltwater routing and bed erosion can govern this complex transitory behaviour. The modelled ice streams switch on and accelerate when subglacial water pockets drain as marginal outburst floods (basal decoupling). Then they decelerate when the lubricating water drainage system spontaneously organizes itself into channels that create tunnel valleys (partial basal recoupling). The ice streams surge or jump in location when these water drainage systems maintain low discharge but they ultimately switch off when tunnel valleys have expanded to develop efficient drainage systems. Beyond reconciling previously disconnected observations of modern and ancient ice streams into a single life cycle, the modelling suggests that tunnel valley development may be crucial in stabilizing portions of ice sheets during periods of climate change.


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 149 ◽  
Author(s):  
Katarzyna Wartalska ◽  
Bartosz Kaźmierczak ◽  
Monika Nowakowska ◽  
Andrzej Kotowski

Modeling the reliability of storm water drainage systems encounters a number of methodological difficulties, especially in the selection of a reliable rainfall scenario. Many methods for creating reference hyetographs are described in the literature. The aim of the work was the analysis of the shapes of local precipitation hyetographs and the verification of the reference shapes of rainfall hyetographs used for the drainage systems designing and modeling its operation in Poland (Euler type II and DVWK models). The research material was represented by historical records of rainfall data from the measuring station located in Jelenia Góra (Poland). Rainfall were grouped due to the similarity of physical features, using various methodologies: Huff, cluster analysis using the Ward and k-means methods. The k-means method proved to be especially useful for selecting precipitation in terms of shape hyetographs. The statistical analysis of the similarity of the rainfall hyetograph shapes was performed within the separated genetic clusters, based on the parameters of mass distributions and unevenness over time. The comparative analysis allowed for the positive verification of the Euler type II and DVWK models for the tested station.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1572 ◽  
Author(s):  
Hany F. Abd-Elhamid ◽  
Martina Zeleňáková ◽  
Zuzana Vranayová ◽  
Ismail Fathy

Urban growth is one of the major causes of flooding in urban areas. This affects the runoff coefficients, which is among the most important factors that affect the design of storm water drainage systems. Changing the runoff coefficient will affect the design parameters of the drainage network, including outfall discharge, velocity, lag time and cost of construction. This study aims to assess the effect of changing the runoff coefficient due to urban growth on the design of a storm water drainage system. The hydrological models Hyfran, StormCAD and GIS are used to analyze different runoff coefficients. This study examines three zones in Dammam in the Kingdom of Saudi Arabia (KSA). The data developed from the models for the current case studies are used to develop an empirical equation to predict the max discharge for other catchments. The discharge is a function of the return period, runoff coefficient, drainage density, longest path, rainfall intensity and catchment area. To validate the developed equation, we use it to estimate the discharge in a real case study in South Korea. A comparison between the measured discharge and estimated discharge shows that the empirical equation is capable of predicting the maximum discharge for different catchments with high accuracy. Then, the validation of the models is carried out to determine the effect of the runoff coefficient on the design of a storm water drainage system in a case study in KSA. The results show that an increasing runoff coefficient due to urban growth increases the outfall discharge and velocity of storm water drainage systems, as well as affecting the cost of construction and decreasing the lag time. The cost increases by two to three times with increasing urbanization. This study provides a new perspective on the hydrologic impact of urban growth on the design of storm water drainage systems, which are essential for flood management. Moreover, the relationship between urban growth and the cost of storm drainage networks is explored, which could help decision makers to make appropriate judgements.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 514
Author(s):  
Leonardo Bayas-Jiménez ◽  
F. Javier Martínez-Solano ◽  
Pedro L. Iglesias-Rey ◽  
Daniel Mora-Melia ◽  
Vicente S. Fuertes-Miquel

A problem for drainage systems managers is the increase in extreme rain events that are increasing in various parts of the world. Their occurrence produces hydraulic overload in the drainage system and consequently floods. Adapting the existing infrastructure to be able to receive extreme rains without generating consequences for cities’ inhabitants has become a necessity. This research shows a new way to improve drainage systems with minimal investment costs, using for this purpose a novel methodology that considers the inclusion of hydraulic control elements in the network, the installation of storm tanks and the replacement of pipes. The presented methodology uses the Storm Water Management Model for the hydraulic analysis of the network and a modified Genetic Algorithm to optimize the network. In this algorithm, called the Pseudo-Genetic Algorithm, the coding of the chromosomes is integral and has been used in previous studies of hydraulic optimization. This work evaluates the cost of the required infrastructure and the damage caused by floods to find the optimal solution. The main conclusion of this study is that the inclusion of hydraulic controls can reduce the cost of network rehabilitation and decrease flood levels.


2021 ◽  
Vol 13 (13) ◽  
pp. 7189
Author(s):  
Beniamino Russo ◽  
Manuel Gómez Valentín ◽  
Jackson Tellez-Álvarez

Urban drainage networks should be designed and operated preferably under open channel flow conditions without flux return, backwater, or overflows. In the case of extreme storm events, urban pluvial flooding is generated by the excess of surface runoff that could not be conveyed by pressurized sewer pipes, due to its limited capacity or, many times, due to the poor efficiency of surface drainage systems to collect uncontrolled overland flow. Generally, the hydraulic design of sewer systems is addressed more for underground networks, neglecting the surface drainage system, although inadequate inlet spacings and locations can cause dangerous flooding with relevant socio-economic impacts and the interruption of critical services and urban activities. Several experimental and numerical studies carried out at the Technical University of Catalonia (UPC) and other research institutions demonstrated that the hydraulic efficiency of inlets can be very low under critical conditions (e.g., high circulating overland flow on steep areas). In these cases, the hydraulic efficiency of conventional grated inlets and continuous transverse elements can be around 10–20%. Their hydraulic capacity, expressed in terms of discharge coefficients, shows the same criticism with values quite far from those that are usually used in several project practice phases. The grate clogging phenomenon and more intense storm events produced by climate change could further reduce the inlets’ performance. In this context, in order to improve the flood urban resilience of our cities, the relevance of the hydraulic behavior of surface drainage systems is clear.


2001 ◽  
Vol 47 (157) ◽  
pp. 271-282 ◽  
Author(s):  
Richard C.A. Hindmarsh ◽  
E. Le Meur

AbstractMarine ice sheets with mechanics described by the shallow-ice approximation by definition do not couple mechanically with the shelf. Such ice sheets are known to have neutral equilibria. We consider the implications of this for their dynamics and in particular for mechanisms which promote marine ice-sheet retreat. The removal of ice-shelf buttressing leading to enhanced flow in grounded ice is discounted as a significant influence on mechanical grounds. Sea-level rise leading to reduced effective pressures under ice streams is shown to be a feasible mechanism for producing postglacial West Antarctic ice-sheet retreat but is inconsistent with borehole evidence. Warming thins the ice sheet by reducing the average viscosity but does not lead to grounding-line retreat. Internal oscillations either specified or generated via a MacAyeal–Payne thermal mechanism promote migration. This is a noise-induced drift phenomenon stemming from the neutral equilibrium property of marine ice sheets. This migration occurs at quite slow rates, but these are sufficiently large to have possibly played a role in the dynamics of the West Antarctic ice sheet after the glacial maximum. Numerical experiments suggest that it is generally true that while significant changes in thickness can be caused by spatially uniform changes, spatial variability coupled with dynamical variability is needed to cause margin movement.


2006 ◽  
Vol 19 (11) ◽  
pp. 2526-2544 ◽  
Author(s):  
Bette L. Otto-Bliesner ◽  
Esther C. Brady ◽  
Gabriel Clauzet ◽  
Robert Tomas ◽  
Samuel Levis ◽  
...  

Abstract The climate sensitivity of the Community Climate System Model version 3 (CCSM3) is studied for two past climate forcings, the Last Glacial Maximum (LGM) and the mid-Holocene. The LGM, approximately 21 000 yr ago, is a glacial period with large changes in the greenhouse gases, sea level, and ice sheets. The mid-Holocene, approximately 6000 yr ago, occurred during the current interglacial with primary changes in the seasonal solar irradiance. The LGM CCSM3 simulation has a global cooling of 4.5°C compared to preindustrial (PI) conditions with amplification of this cooling at high latitudes and over the continental ice sheets present at LGM. Tropical sea surface temperature (SST) cools by 1.7°C and tropical land temperature cools by 2.6°C on average. Simulations with the CCSM3 slab ocean model suggest that about half of the global cooling is explained by the reduced LGM concentration of atmospheric CO2 (∼50% of present-day concentrations). There is an increase in the Antarctic Circumpolar Current and Antarctic Bottom Water formation, and with increased ocean stratification, somewhat weaker and much shallower North Atlantic Deep Water. The mid-Holocene CCSM3 simulation has a global, annual cooling of less than 0.1°C compared to the PI simulation. Much larger and significant changes occur regionally and seasonally, including a more intense northern African summer monsoon, reduced Arctic sea ice in all months, and weaker ENSO variability.


2021 ◽  
Author(s):  
Jean Vérité ◽  
Édouard Ravier ◽  
Olivier Bourgeois ◽  
Stéphane Pochat ◽  
Thomas Lelandais ◽  
...  

<p>Over the three last decades, great efforts have been undertaken by the glaciological community to characterize the behaviour of ice streams and better constrain the dynamics of ice sheets. Studies of modern ice stream beds reveal crucial information on ice-meltwater-till-bedrock interactions, but are restricted to punctual observations limiting the understanding of ice stream dynamics as a whole. Consequently, theoretical ice stream landsystems derived from geomorphological and sedimentological observations were developed to provide wider constraints on those interactions on palaeo-ice stream beds. Within these landsystems, the spatial distribution and formation processes of subglacial periodic bedforms transverse to the ice flow direction – ribbed bedforms – remain unclear. The purpose of this study is (i) to explore the conditions under which these ribbed bedforms develop and (ii) to constrain their spatial organisation along ice stream beds.  </p><p>We performed physical experiments with silicon putty (to simulate the ice), water (to simulate the meltwater) and sand (to simulate a soft sedimentary bed) to model the dynamics of ice streams and produce analog subglacial landsystems. We compare the results of these experiments with the distribution of ribbed bedforms on selected examples of palaeo-ice stream beds of the Laurentide Ice Sheet. Based on this comparison, we can draw several conclusions regarding the significance of ribbed bedforms in ice stream contexts:</p><ul><li>Ribbed bedforms tend to form where the ice flow undergoes high velocity gradients and the ice-bed interface is unlubricated. Where the ribs initiate, we hypothesize that high driving stresses generate high basal shear stresses, accommodated through bed deformation of the active uppermost part of the bed.</li> <li>Ribbed bedforms can develop subglacially from a flat sediment surface beneath shear margins (i.e., lateral ribbed bedforms) and stagnant lobes (i.e., submarginal ribbed bedforms) of ice streams, while they do not develop beneath surging lobes.</li> <li>The orientation of ribbed bedforms reflects the local stress state along the ice-bed interface, with transverse bedforms formed by compression beneath ice lobes and oblique bedforms formed by transgression below lateral shear margins.</li> <li>The development of ribbed bedforms where the ice-bed interface is unlubricated reveals distinctive types of discontinuous basal drainage systems below shear and lobe margins: linked-cavities and efficient meltwater channels respectively.</li> </ul><p>Ribbed bedforms could thus constitute convenient geomorphic markers for the reconstruction of palaeo-ice stream margins, palaeo-ice flow dynamics and palaeo-meltwater drainage characteristics.</p>


2014 ◽  
Vol 10 (5) ◽  
pp. 1817-1836 ◽  
Author(s):  
F. A. Ziemen ◽  
C. B. Rodehacke ◽  
U. Mikolajewicz

Abstract. In the standard Paleoclimate Modelling Intercomparison Project (PMIP) experiments, the Last Glacial Maximum (LGM) is modeled in quasi-equilibrium with atmosphere–ocean–vegetation general circulation models (AOVGCMs) with prescribed ice sheets. This can lead to inconsistencies between the modeled climate and ice sheets. One way to avoid this problem would be to model the ice sheets explicitly. Here, we present the first results from coupled ice sheet–climate simulations for the pre-industrial times and the LGM. Our setup consists of the AOVGCM ECHAM5/MPIOM/LPJ bidirectionally coupled with the Parallel Ice Sheet Model (PISM) covering the Northern Hemisphere. The results of the pre-industrial and LGM simulations agree reasonably well with reconstructions and observations. This shows that the model system adequately represents large, non-linear climate perturbations. A large part of the drainage of the ice sheets occurs in ice streams. Most modeled ice stream systems show recurring surges as internal oscillations. The Hudson Strait Ice Stream surges with an ice volume equivalent to about 5 m sea level and a recurrence interval of about 7000 yr. This is in agreement with basic expectations for Heinrich events. Under LGM boundary conditions, different ice sheet configurations imply different locations of deep water formation.


1992 ◽  
Vol 38 (129) ◽  
pp. 245-256 ◽  
Author(s):  
Richard B. Alley

AbstractIce-flow modeling requires a flow law relating strain rates to stresses in situ, but a flow law cannot be measured directly in ice sheets. Microscopic processes such as dislocation glide and boundary diffusion control both the flow law for ice and the development of physical properties such as grain-size andc-axis fabric. These microscopic processes can be inferred from observations of the physical properties, and the flow law can then be estimated from the microscopic processes.A review of available literature shows that this approach can be imperfectly successful. Interior regions of large ice sheets probably have depth-varying flow-law “constants”, with the stress exponent,n, for power-law creep less than 3 in upper regions and equal to 3 only in deep ice;nprobably equals 3 through most of the thickness of ice shelves and ice streams.


Sign in / Sign up

Export Citation Format

Share Document