scholarly journals The material properties of ice bridges in the Maxwell Elasto-Brittle rheology

2019 ◽  
Author(s):  
Mathieu Plante ◽  
Bruno Tremblay ◽  
Martin Losch ◽  
Jean-François Lemieux

Abstract. The shape and break-up of landfast ice arches in narrow channels depend on the material properties of the sea-ice. The effect of the material parameters on ice arches in a sea ice model with the Maxwell Elasto-Brittle (MEB) rheology is investigated. The MEB rheology, which includes a damage parameterization, is implemented using the numerical framework of a Viscous-Plastic model. This configuration allows to study their different physics independently of their numerical implementation. Idealized ice bridge simulations show that the elastic part of the model together with the damage parameterization allows the propagation of fractures in space at very short time-scales. The fractures orientation is sensitive to the chosen angle of internal friction, but deviates from theory. It is speculated that these deviations stem from the absence of a flow rule in the rheology. Downwind of a channel, the MEB model easily forms ice arches and sustains an ice bridge. Using a material cohesion in the range of 15–21 kPa is most consistent with the ice bridges commonly observed in the Arctic. Upstream of the channel, the formation of ice arches is complicated by the absence of a relationship between the ice strength and the ice conditions, and by the presence of numerical errors associated with the damage parameterization. Results suggest that the formation of ice arches upwind of a channel is highly dependent on the rheology and calls for more analysis to determine the necessary conditions for their formation.

2021 ◽  
Vol 15 (6) ◽  
pp. 2873-2888
Author(s):  
Damien Ringeisen ◽  
L. Bruno Tremblay ◽  
Martin Losch

Abstract. The standard viscous–plastic (VP) sea ice model with an elliptical yield curve and a normal flow rule has at least two issues. First, it does not simulate fracture angles below 30∘ in uni-axial compression, in contrast with observations of linear kinematic features (LKFs) in the Arctic Ocean. Second, there is a tight, but unphysical, coupling between the fracture angle, post-fracture deformation, and the shape of the yield curve. This tight coupling was identified as the reason for the overestimation of fracture angles. In this paper, these issues are addressed by removing the normality constraint on the flow rule in the standard VP model. The new rheology is tested in numerical uni-axial loading tests. To this end, an elliptical plastic potential – which defines the post-fracture deformations, or flow rule – is introduced independently of the elliptical yield curve. As a consequence, the post-fracture deformation is decoupled from the mechanical strength properties of the ice. We adapt Roscoe's angle theory, which is based on observations of granular materials, to the context of sea ice modeling. In this framework, the fracture angles depend on both yield curve and plastic potential parameters. This new formulation predicts accurately the results of the numerical experiments with a root-mean-square error below 1.3∘. The new rheology allows for angles of fracture smaller than 30∘ in uni-axial compression. For instance, a plastic potential with an ellipse aspect ratio smaller than 2 (i.e., the default value in the standard viscous–plastic model) can lead to fracture angles as low as 22∘. Implementing an elliptical plastic potential in the standard VP sea ice model requires only small modifications to the standard VP rheology. The momentum equations with the modified rheology, however, are more difficult to solve numerically. The independent plastic potential solves the two issues with VP rheology addressed in this paper: in uni-axial loading experiments, it allows for smaller fracture angles, which fall within the range of satellite observations, and it decouples the angle of fracture and the post-fracture deformation from the shape of the yield curve. The orientation of the post-fracture deformation along the fracture lines (convergence and divergence), however, is still controlled by the shape of the plastic potential and the location of the stress state on the yield curve. A non-elliptical plastic potential would be required to change the orientation of deformation and to match deformation statistics derived from satellite measurements.


2006 ◽  
Vol 36 (9) ◽  
pp. 1719-1738 ◽  
Author(s):  
Alexander V. Wilchinsky ◽  
Daniel L. Feltham ◽  
Paul A. Miller

Abstract A multithickness sea ice model explicitly accounting for the ridging and sliding friction contributions to sea ice stress is developed. Both ridging and sliding contributions depend on the deformation type through functions adopted from the Ukita and Moritz kinematic model of floe interaction. In contrast to most previous work, the ice strength of a uniform ice sheet of constant ice thickness is taken to be proportional to the ice thickness raised to the 3/2 power, as is revealed in discrete element simulations by Hopkins. The new multithickness sea ice model for sea ice stress has been implemented into the Los Alamos “CICE” sea ice model code and is shown to improve agreement between model predictions and observed spatial distribution of sea ice thickness in the Arctic.


2020 ◽  
Author(s):  
Damien Ringeisen ◽  
L. Bruno Tremblay ◽  
Martin Losch

Abstract. The standard viscous-plastic (VP) sea ice model with an elliptical yield curve and normal flow rule does not simulate fracture angles below 30° in uni-axial compression, in stark contrast with observations of Linear Kinematic Features (LKFs) in the Arctic Ocean. In this paper, we remove the normality constraint in the standard VP model and study its impact on the fracture angle in a simple uni-axial compressive loading test. To this end, we introduce a plastic potential independent of the yield curve that defines the post-fracture deformations or flow rule. The numerical experiments show that the fracture angle strongly depends on the flow rule details. For instance, a plastic potential with an ellipse aspect ratio smaller than that of the standard ellipse gives fracture angles that are as low as 22°. A newly adapted theory – based on one developed from observations of granular material – predicts numerical simulations of the fracture angles for plastic materials with a normal or non-normal flow rule with a root-mean-square error below 1.3°. Implementing an elliptical plastic potential in the standard VP sea ice model requires only minor modifications. The modified rheology, however, takes longer to solve numerically for a fixed level of numerical convergence. In conclusion, the use of a plastic potential addresses several issues with the standard VP rheology: the fracture angle can be reduced to values within the range of satellite observations and it can be decoupled from the exact shape of the yield curve. Furthermore, a different plastic potential function will be required to change the post-fracture deformation along the fracture lines (convergence or divergence) and to make the fracture angle independent on the confining pressure (as in observations).


2005 ◽  
Vol 133 (12) ◽  
pp. 3481-3497 ◽  
Author(s):  
Jennifer K. Hutchings ◽  
Petra Heil ◽  
William D. Hibler

Abstract Sea ice deformation is localized in narrow zones of high strain rate that extend hundreds of kilometers, for example, across the Arctic Basin. This paper demonstrates that these failure zones may be modeled with a viscous–plastic sea ice model, using an isotropic rheology. If the ice is assumed to be heterogeneous at the grid scale, and allowed to weaken in time, intersecting failure zones propagate across the region. The direction of failure propagation depends upon the stress applied to the ice (wind stress and boundary conditions) and the rheological model describing plastic failure of the ice. The spacing between failure zones is controlled by the magnitude of the wind stress and the distribution describing spatial variability of ice strength. Sea ice motion and deformation oscillate at close to a 12-h period throughout the Arctic and Antarctic pack ice. This oscillation is found at all spatial scales from hundreds of kilometers to the lead scale. It is shown that with an inertial embedded model, sea ice deformation rotates between pairs of fault patterns with a semidiurnal period. It is well known that linear zones of deformation exist at many spatial scales throughout the Arctic Basin. The model presented in this paper may be scaled to simulate these features.


2020 ◽  
pp. 024
Author(s):  
Rym Msadek ◽  
Gilles Garric ◽  
Sara Fleury ◽  
Florent Garnier ◽  
Lauriane Batté ◽  
...  

L'Arctique est la région du globe qui s'est réchauffée le plus vite au cours des trente dernières années, avec une augmentation de la température de surface environ deux fois plus rapide que pour la moyenne globale. Le déclin de la banquise arctique observé depuis le début de l'ère satellitaire et attribué principalement à l'augmentation de la concentration des gaz à effet de serre aurait joué un rôle important dans cette amplification des températures au pôle. Cette fonte importante des glaces arctiques, qui devrait s'accélérer dans les décennies à venir, pourrait modifier les vents en haute altitude et potentiellement avoir un impact sur le climat des moyennes latitudes. L'étendue de la banquise arctique varie considérablement d'une saison à l'autre, d'une année à l'autre, d'une décennie à l'autre. Améliorer notre capacité à prévoir ces variations nécessite de comprendre, observer et modéliser les interactions entre la banquise et les autres composantes du système Terre, telles que l'océan, l'atmosphère ou la biosphère, à différentes échelles de temps. La réalisation de prévisions saisonnières de la banquise arctique est très récente comparée aux prévisions du temps ou aux prévisions saisonnières de paramètres météorologiques (température, précipitation). Les résultats ayant émergé au cours des dix dernières années mettent en évidence l'importance des observations de l'épaisseur de la glace de mer pour prévoir l'évolution de la banquise estivale plusieurs mois à l'avance. Surface temperatures over the Arctic region have been increasing twice as fast as global mean temperatures, a phenomenon known as arctic amplification. One main contributor to this polar warming is the large decline of Arctic sea ice observed since the beginning of satellite observations, which has been attributed to the increase of greenhouse gases. The acceleration of Arctic sea ice loss that is projected for the coming decades could modify the upper level atmospheric circulation yielding climate impacts up to the mid-latitudes. There is considerable variability in the spatial extent of ice cover on seasonal, interannual and decadal time scales. Better understanding, observing and modelling the interactions between sea ice and the other components of the climate system is key for improved predictions of Arctic sea ice in the future. Running operational-like seasonal predictions of Arctic sea ice is a quite recent effort compared to weather predictions or seasonal predictions of atmospheric fields like temperature or precipitation. Recent results stress the importance of sea ice thickness observations to improve seasonal predictions of Arctic sea ice conditions during summer.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 174
Author(s):  
Günther Heinemann ◽  
Sascha Willmes ◽  
Lukas Schefczyk ◽  
Alexander Makshtas ◽  
Vasilii Kustov ◽  
...  

The parameterization of ocean/sea-ice/atmosphere interaction processes is a challenge for regional climate models (RCMs) of the Arctic, particularly for wintertime conditions, when small fractions of thin ice or open water cause strong modifications of the boundary layer. Thus, the treatment of sea ice and sub-grid flux parameterizations in RCMs is of crucial importance. However, verification data sets over sea ice for wintertime conditions are rare. In the present paper, data of the ship-based experiment Transarktika 2019 during the end of the Arctic winter for thick one-year ice conditions are presented. The data are used for the verification of the regional climate model COSMO-CLM (CCLM). In addition, Moderate Resolution Imaging Spectroradiometer (MODIS) data are used for the comparison of ice surface temperature (IST) simulations of the CCLM sea ice model. CCLM is used in a forecast mode (nested in ERA5) for the Norwegian and Barents Seas with 5 km resolution and is run with different configurations of the sea ice model and sub-grid flux parameterizations. The use of a new set of parameterizations yields improved results for the comparisons with in-situ data. Comparisons with MODIS IST allow for a verification over large areas and show also a good performance of CCLM. The comparison with twice-daily radiosonde ascents during Transarktika 2019, hourly microwave water vapor measurements of first 5 km in the atmosphere and hourly temperature profiler data show a very good representation of the temperature, humidity and wind structure of the whole troposphere for CCLM.


1991 ◽  
Vol 15 ◽  
pp. 17-25 ◽  
Author(s):  
Chi F. Ip ◽  
William D. Hibler ◽  
Gregory M. Flato

A generalized numerical model which allows for a variety of non-linear rheologies is developed for the seasonal simulation of sea-ice circulation and thickness. The model is used to investigate the effects (such as the role of shear stress and the existence of a flow rule) of different rheologies on the ice-drift pattern and build-up in the Arctic Basin. Differences in local drift seem to be closely related to the amount of allowable shear stress. Similarities are found between the elliptical and square cases and between the Mohr-Coulomb and cavitating fluid cases. Comparisons between observed and simulated buoy drift are made for several buoy tracks in the Arctic Basin. Correlation coefficients to the observed buoy drift range from 0.83 for the cavitating fluid to 0.86 for the square rheology. The average ratio of buoy-drift distance to average model-drift distance for several buoys is 1.15 (square), 1.18 (elliptical), 1.30 (Mohr-Coulomb) and 1.40 (cavitating fluid).


2010 ◽  
Vol 11 (1) ◽  
pp. 199-210 ◽  
Author(s):  
Yi-Ching Chung ◽  
Stéphane Bélair ◽  
Jocelyn Mailhot

Abstract The new Recherche Prévision Numérique (NEW-RPN) model, a coupled system including a multilayer snow thermal model (SNTHERM) and the sea ice model currently used in the Meteorological Service of Canada (MSC) operational forecasting system, was evaluated in a one-dimensional mode using meteorological observations from the Surface Heat Budget of the Arctic Ocean (SHEBA)’s Pittsburgh site in the Arctic Ocean collected during 1997/98. Two parameters simulated by NEW-RPN (i.e., snow depth and ice thickness) are compared with SHEBA’s observations and with simulations from RPN, MSC’s current coupled system (the same sea ice model and a single-layer snow model). Results show that NEW-RPN exhibits better agreement for the timing of snow depletion and for ice thickness. The profiles of snow thermal conductivity in NEW-RPN show considerable variability across the snow layers, but the mean value (0.39 W m−1 K−1) is within the range of reported observations for SHEBA. This value is larger than 0.31 W m−1 K−1, which is commonly used in single-layer snow models. Of particular interest in NEW-RPN’s simulation is the strong temperature stratification of the snowpack, which indicates that a multilayer snow model is needed in the SHEBA scenario. A sensitivity analysis indicates that snow compaction is also a crucial process for a realistic representation of the snowpack within the snow/sea ice system. NEW-RPN’s overestimation of snow depth may be related to other processes not included in the study, such as small-scale horizontal variability of snow depth and blowing snow processes.


1997 ◽  
Vol 25 ◽  
pp. 203-207 ◽  
Author(s):  
David A. Bailey ◽  
Amanda H. Lynch ◽  
Katherine S. Hedström

Global climate models have pointed to the polar regions as very sensitive areas in response to climate change. However, these models often do not contain representations of processes peculiar to the polar regions such as dynamic sea ice, permafrost, and Arctic stratus clouds. Further, global models do not have the resolution necessary to model accurately many of the important processes and feedbacks. Thus, there is a need for regional climate models of higher resolution. Our such model (ARCSy M) has been developed by A. Lynch and W. Chapman. This model incorporates the NCAR Regional Climate Model (RegCM2) with the addition of Flato–Hibler cavitating fluid sea-ice dynamics and Parkinson–Washington ice thermodynamic formulation. Recently work has been conducted to couple a mixed-layer ocean to the atmosphere–ice model, and a three-dimensional (3-D) dynamical ocean model, in this case the S-Coordinate Primitive Equation Model (SPEM), to the ice model. Simulations including oceanic circulation will allow investigations of the feedbacks involved in fresh-water runoff from sea-ice melt and sea-ice transport. Further, it is shown that the definition of the mixed-layer depth has significant impact on ice thermodynamics.


Sign in / Sign up

Export Citation Format

Share Document