scholarly journals Review article: Performance assessment of electromagnetic wave-based field sensors for SWE monitoring   

2021 ◽  
Author(s):  
Alain Royer ◽  
Alexandre Roy ◽  
Sylvain Jutras ◽  
Alexandre Langlois

Abstract. Continuous and spatially distributed data of snow mass (snow water equivalent, SWE) from automatic ground-based measurements are increasingly required for climate change studies and for hydrological applications (snow hydrological model improvement and data assimilation). We present and compare four new-generation non-invasive sensors that are based on electromagnetic waves for direct measurements of SWE: Cosmic Ray Neutron Probe (CNRP); Gamma Ray Monitoring (GMON) scintillator; frequency-modulated continuous-wave radar (FMCW-Radar) at 24 GHz; and Global Navigation Satellite System (GNSS) receivers for SWE retrieval. All four techniques are relatively low cost, have low power requirements, provide continuous and autonomous measurements, and can be installed in remote areas. Their operating principles are briefly summarized before examples of comparative measurements are provided. A performance review comparing their advantages, drawbacks and accuracies is discussed. Overall instrument accuracy is estimated to range between 9 and 15 %.

2021 ◽  
Vol 13 (4) ◽  
pp. 616
Author(s):  
Rafael Alonso ◽  
José María García del Pozo ◽  
Samuel T. Buisán ◽  
José Adolfo Álvarez

Snow makes a great contribution to the hydrological cycle in cold regions. The parameter to characterize available the water from the snow cover is the well-known snow water equivalent (SWE). This paper presents a near-surface-based radar for determining the SWE from the measured complex spectral reflectance of the snowpack. The method is based in a stepped-frequency continuous wave radar (SFCW), implemented in a coherent software defined radio (SDR), in the range from 150 MHz to 6 GHz. An electromagnetic model to solve the electromagnetic reflectance of a snowpack, including the frequency and wetness dependence of the complex relative dielectric permittivity of snow layers, is shown. Using the previous model, an approximated method to calculate the SWE is proposed. The results are presented and compared with those provided by a cosmic-ray neutron SWE gauge over the 2019–2020 winter in the experimental AEMet Formigal-Sarrios test site. This experimental field is located in the Spanish Pyrenees at an elevation of 1800 m a.s.l. The results suggest the viability of the approximate method. Finally, the feasibility of an auxiliary snow height measurement sensor based on a 120 GHz frequency modulated continuous wave (FMCW) radar sensor, is shown.


Author(s):  
S. Zahran ◽  
M. M. Mostafa ◽  
A. Masiero ◽  
A. M. Moussa ◽  
A. Vettore ◽  
...  

<p><strong>Abstract.</strong> During the last decade, the number of applications of UAVs has continuously increased, making the global UAV market one of those with the highest rate of growth. The worldwide increasing usage of UAVs is causing an ever-growing demand for efficient solutions in order to make them usable in every kind of working condition. In fact, nowadays the main restriction to the usage of UAVs is probably the need of reliable position estimates provided by using the Global Navigation Satellite System (GNSS): since UAVs mostly rely on the integration of GNSS/Inertial Navigation System (INS) to properly fulfil their tasks, they face a major challenge while navigating in GNSS denied environments. The goal of this paper is that of investigating possible strategies to reduce such main restriction to UAV usage, i.e. enabling flights in GNSS denied environment by providing position estimates with accuracy quite comparable to that of standard GNSS receivers currently mounted on commercialized drones. To be more specific, this paper proposes the combined use of a novel Frequency Modulated Continuous Wave (FMCW) Radar, a set of Ultra-Wideband (UWB) devices, and Inertial Measurement Unit (IMU) measurements in order to compensate for the unavailability of the GNSS signal units. A 24-GHz micro FMCW radar and a UWB device have been attached to a quadcopter during the flight. The radar receives the reflections from ground scatterers, whereas the UWB system provides range measurements between a UWB rover mounted on the UAV and a set of UWB anchors distributed along the flying area.</p>


Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3351 ◽  
Author(s):  
Andreas Och ◽  
Jochen O. Schrattenecker ◽  
Stefan Schuster ◽  
Patrick A. Hölzl ◽  
Philipp F. Freidl ◽  
...  

A primary concern in a multitude of industrial processes is the precise monitoring of gaseous substances to ensure proper operating conditions. However, many traditional technologies are not suitable for operation under harsh environmental conditions. Radar-based time-of-flight permittivity measurements have been proposed as alternative but suffer from high cost and limited accuracy in highly cluttered industrial plants. This paper examines the performance limits of low-cost frequency-modulated continuous-wave (FMCW) radar sensors for permittivity measurements. First, the accuracy limits are investigated theoretically and the Cramér-Rao lower bounds for time-of-flight based permittivity and concentration measurements are derived. In addition, Monte-Carlo simulations are carried out to validate the analytical solutions. The capabilities of the measurement concept are then demonstrated with different binary gas mixtures of Helium and Carbon Dioxide in air. A low-cost time-of-flight sensor based on two synchronized fully-integrated millimeter-wave (MMW) radar transceivers is developed and evaluated. A method to compensate systematic deviations caused by the measurement setup is proposed and implemented. The theoretical discussion underlines the necessity of exploiting the information contained in the signal phase to achieve the desired accuracy. Results of various permittivity and gas concentration measurements are in good accordance to reference sensors and measurements with a commercial vector network analyzer (VNA). In conclusion, the proposed radar-based low-cost sensor solution shows promising performance for the intended use in demanding industrial applications.


2018 ◽  
Vol 10 (2) ◽  
pp. 207-215 ◽  
Author(s):  
Werner Scheiblhofer ◽  
Reinhard Feger ◽  
Andreas Haderer ◽  
Andreas Stelzer

AbstractWe present the realization of an frequency-modulated continuous-wave radar target simulator, based on a modulated-reflector radar system. The simulator, designed for the 24 GHz frequency band, uses low-cost modulated-reflector nodes and is capable to simultaneously generate multiple targets in a real-time environment. The realization is based on a modular approach and thus provides a high scalability of the whole system. It is demonstrated that the concept is able to simulate multiple artificial targets, located at user-selectable ranges and even velocities, utilized within a completely static setup. The characterization of the developed hardware shows that the proposed concept allows to dynamically and precisely adjust the radar cross-section of each single target within a dynamic range of 50 dB. Additionally, the provided range-proportional target frequency bandwidth makes the system perfectly suitable for fast and reliable intermediate frequency-chain calibration of multi-channel radar systems. Within this paper we demonstrate the application of the concept for a linear sweeped frequency-modulated continuous-wave radar. The presented approach is applicable to any microwave-based measurement system using frequency differences between transmit- and receive signals for range- and velocity evaluation, such as (non-)linear sweeped as well as pure Doppler radar systems.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 780
Author(s):  
Kazunori Takahashi ◽  
Takashi Miwa

The paper discusses a way to configure a stepped-frequency continuous wave (SFCW) radar using a low-cost software-defined radio (SDR). The most of high-end SDRs offer multiple transmitter (TX) and receiver (RX) channels, one of which can be used as the reference channel for compensating the initial phases of TX and RX local oscillator (LO) signals. It is same as how commercial vector network analyzers (VNAs) compensate for the LO initial phase. These SDRs can thus acquire phase-coherent in-phase and quadrature (I/Q) data without additional components and an SFCW radar can be easily configured. On the other hand, low-cost SDRs typically have only one transmitter and receiver. Therefore, the LO initial phase has to be compensated and the phases of the received I/Q signals have to be retrieved, preferably without employing an additional receiver and components to retain the system low-cost and simple. The present paper illustrates that the difference between the phases of TX and RX LO signals varies when the LO frequency is changed because of the timing of the commencement of the mixing. The paper then proposes a technique to compensate for the LO initial phases using the internal RF loopback of the transceiver chip and to reconstruct a pulse, which requires two streaming: one for the device under test (DUT) channel and the other for the internal RF loopback channel. The effect of the LO initial phase and the proposed method for the compensation are demonstrated by experiments at a single frequency and sweeping frequency, respectively. The results show that the proposed method can compensate for the LO initial phases and ultra-wideband (UWB) pulses can be reconstructed correctly from the data sampled by a low-cost SDR.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2594
Author(s):  
Aiden Morrison ◽  
Nadezda Sokolova ◽  
James Curran

This paper investigates the challenges of developing a multi-frequency radio frequency interference (RFI) monitoring and characterization system that is optimized for ease of deployment and operation as well as low per unit cost. To achieve this, we explore the design and development of a multiband global navigation satellite system (GNSS) front-end which is intrinsically capable of synchronizing side channel information from non-RF sensors, such as inertial measurement units and integrated power meters, to allow the simultaneous production of substantial amounts of sampled spectrum while also allowing low-cost, real-time monitoring and logging of detected RFI events. While the inertial measurement unit and barometer are not used in the RFI investigation discussed, the design features that provide for their precise synchronization with the RF sample stream are presented as design elements worth consideration. The designed system, referred to as Four Independent Tuners with Data-packing (FITWD), was utilized in a data collection campaign over multiple European and Scandinavian countries in support of the determination of the relative occurrence rates of L1/E1 and L5/E5a interference events and intensities where it proved itself a successful alternative to larger and more expensive commercial solutions. The dual conclusions reached were that it was possible to develop a compact low-cost, multi-channel radio frequency (RF) front-end that implicitly supported external data source synchronization, and that such monitoring systems or similar capabilities integrated within receivers are likely to be needed in the future due to the increasing occurrence rates of GNSS RFI events.


2019 ◽  
Vol 54 (3) ◽  
pp. 97-112
Author(s):  
Mostafa Hamed ◽  
Ashraf Abdallah ◽  
Ashraf Farah

Abstract Nowadays, Precise Point Positioning (PPP) is a very popular technique for Global Navigation Satellite System (GNSS) positioning. The advantage of PPP is its low cost as well as no distance limitation when compared with the differential technique. Single-frequency receivers have the advantage of cost effectiveness when compared with the expensive dual-frequency receivers, but the ionosphere error makes a difficulty to be completely mitigated. This research aims to assess the effect of using observations from both GPS and GLONASS constellations in comparison with GPS only for kinematic purposes using single-frequency observations. Six days of the year 2018 with single-frequency data for the Ethiopian IGS station named “ADIS” were processed epoch by epoch for 24 hours once with GPS-only observations and another with GPS/GLONASS observations. In addition to “ADIS” station, a kinematic track in the New Aswan City, Aswan, Egypt, has been observed using Leica GS15, geodetic type, dual-frequency, GPS/GLONASS GNSS receiver and single-frequency data have been processed. Net_Diff software was used for processing all the data. The results have been compared with a reference solution. Adding GLONASS satellites significantly improved the satellite number and Position Dilution Of Precision (PDOP) value and accordingly improved the accuracy of positioning. In the case of “ADIS” data, the 3D Root Mean Square Error (RMSE) ranged between 0.273 and 0.816 m for GPS only and improved to a range from 0.256 to 0.550 m for GPS/GLONASS for the 6 processed days. An average improvement ratio of 24%, 29%, 30%, and 29% in the east, north, height, and 3D position components, respectively, was achieved. For the kinematic trajectory, the 3D position RMSE improved from 0.733 m for GPS only to 0.638 m for GPS/GLONASS. The improvement ratios were 7%, 5%, 28%, and 13% in the east, north, height, and 3D position components, respectively, for the kinematic trajectory data. This opens the way to add observations from the other two constellations (Galileo and BeiDou) for more accuracy in future research.


2017 ◽  
Vol 11 (2) ◽  
pp. 827-840 ◽  
Author(s):  
Luc Girod ◽  
Christopher Nuth ◽  
Andreas Kääb ◽  
Bernd Etzelmüller ◽  
Jack Kohler

Abstract. Acquiring data to analyse change in topography is often a costly endeavour requiring either extensive, potentially risky, fieldwork and/or expensive equipment or commercial data. Bringing the cost down while keeping the precision and accuracy has been a focus in geoscience in recent years. Structure from motion (SfM) photogrammetric techniques are emerging as powerful tools for surveying, with modern algorithm and large computing power allowing for the production of accurate and detailed data from low-cost, informal surveys. The high spatial and temporal resolution permits the monitoring of geomorphological features undergoing relatively rapid change, such as glaciers, moraines, or landslides. We present a method that takes advantage of light-transport flights conducting other missions to opportunistically collect imagery for geomorphological analysis. We test and validate an approach in which we attach a consumer-grade camera and a simple code-based Global Navigation Satellite System (GNSS) receiver to a helicopter to collect data when the flight path covers an area of interest. Our method is based and builds upon Welty et al. (2013), showing the ability to link GNSS data to images without a complex physical or electronic link, even with imprecise camera clocks and irregular time lapses. As a proof of concept, we conducted two test surveys, in September 2014 and 2015, over the glacier Midtre Lovénbreen and its forefield, in northwestern Svalbard. We were able to derive elevation change estimates comparable to in situ mass balance stake measurements. The accuracy and precision of our DEMs allow detection and analysis of a number of processes in the proglacial area, including the presence of thermokarst and the evolution of water channels.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 465 ◽  
Author(s):  
Krzysztof Marcinek ◽  
Witold A. Pleskacz

This work presents the results of research toward designing an instruction set extension dedicated to Global Navigation Satellite System (GNSS) baseband processing. The paper describes the state-of-the-art techniques of GNSS receiver implementation. Their advantages and disadvantages are discussed. Against this background, a new versatile instruction set extension for GNSS baseband processing is presented. The authors introduce improved mechanisms for instruction set generation focused on multi-channel processing. The analytical approach used by the authors leads to the introduction of a GNSS-instruction set extension (ISE) for GNSS baseband processing. The developed GNSS-ISE is simulated extensively using PC software and field-programmable gate array (FPGA) emulation. Finally, the developed GNSS-ISE is incorporated into the first-in-the-world, according to the authors’ best knowledge, integrated, multi-frequency, and multi-constellation microcontroller with embedded flash memory. Additionally, this microcontroller may serve as an application processor, which is a unique feature. The presented results show the feasibility of implementing the GNSS-ISE into an embedded microprocessor system and its capability of performing baseband processing. The developed GNSS-ISE can be implemented in a wide range of applications including smart IoT (internet of things) devices or remote sensors, fostering the adaptation of multi-frequency and multi-constellation GNSS receivers to the low-cost consumer mass-market.


Sign in / Sign up

Export Citation Format

Share Document