scholarly journals Variability in sea ice carbonate chemistry: A case study comparing the importance of ikaite precipitation, bottom ice algae, and currents across an invisible polynya

2021 ◽  
Author(s):  
Brent G. T. Else ◽  
Araleigh Cranch ◽  
Richard P. Sims ◽  
Samantha Jones ◽  
Laura A. Dalman ◽  
...  

Abstract. The carbonate chemistry of sea ice is known to play a role in global carbon cycles, but its importance is uncertain in part due to disparities in reported results. Variability in physical and biological drivers is usually invoked to explain differences between studies. In the Canadian Arctic Archipelago, “invisible polynyas” – areas of strong currents, thin ice, and potentially high biological productivity – are examples of extreme spatial variability. We used an invisible polynya as a natural laboratory to study the effects of inferred initial ice formation conditions, ice growth rate, and algal biomass on the distribution of carbonate species by collecting enough cores to perform a statistical comparison between sites located within, and just outside of, a polynya near Iqaluktuttiaq (Cambridge Bay, Nunavut, Canada). At both sites, the uppermost 10-cm ice horizon showed evidence of CO2 offgassing, while carbonate distributions in the middle and bottommost 10-cm horizons largely followed the salinity distribution. In the polynya, the upper-ice horizon had significantly higher bulk total inorganic carbon (TIC), total alkalinity (TA), and salinity, potentially due to freeze-up conditions that favoured frazil ice production. The middle-ice horizons were statistically indistinguishable between sites, suggesting that ice growth rate is not an important factor for the carbonate distribution under mid-winter conditions. The thicker (non-polynya) site experienced higher algal biomass, TIC, and TA in the bottom horizon. Carbonate chemistry in the bottom horizon could be explained by the salinity distribution, with the strong currents at the polynya site potentially playing a role in desalinisation; biology did not have a noticeable impact. We did see evidence of calcium carbonate precipitation, but with little impact on the TIC : TA ratio, and little difference between sites. Because differences were constrained to relatively thin layers at the top and bottom, vertically averaged values of TIC, TA, and especially the TIC : TA ratio were not meaningfully different between sites. This provides some justification for using a single bulk value for each parameter when modeling sea ice effects on ocean chemistry at coarse resolution. Exactly what value to use (particularly for the TIC : TA ratio) likely varies by region but could potentially be approximated from knowledge of the source seawater and sea ice salinity. Further insights await a rigorous intercomparison of existing data.

2012 ◽  
Vol 6 (1) ◽  
pp. 505-530 ◽  
Author(s):  
M. Fischer ◽  
D. N. Thomas ◽  
A. Krell ◽  
G. Nehrke ◽  
J. Göttlicher ◽  
...  

Abstract. Calcium carbonate precipitation in sea ice can increase pCO2 during precipitation in winter and decrease pCO2 during dissolution in spring. CaCO3 precipitation in sea ice is thought to potentially drive significant CO2 uptake by the ocean. However, little is known about the quantitative spatial and temporal distribution of CaCO3 within sea ice. This is the first quantitative study of hydrous calcium carbonate, as ikaite, in sea ice and discusses its potential significance for the carbon cycle in polar oceans. Ice cores and brine samples were collected from pack and land fast sea ice between September and December 2007 during an expedition in the East Antarctic and another off Terre Adélie, Antarctica. Samples were analysed for CaCO3, Salinity, DOC, DON, Phosphate, and total alkalinity. A relationship between the measured parameters and CaCO3 precipitation could not be observed. We found calcium carbonate, as ikaite, mostly in the top layer of sea ice with values up to 126 mg ikaite per liter melted sea ice. This potentially represents a contribution between 0.12 and 9 Tg C to the annual carbon flux in polar oceans. The horizontal distribution of ikaite in sea ice was heterogenous. We also found the precipitate in the snow on top of the sea ice.


2020 ◽  
Vol 26 (4) ◽  
pp. 375-399
Author(s):  
Theodor Kindeberg ◽  
Nicholas R. Bates ◽  
Travis A. Courtney ◽  
Tyler Cyronak ◽  
Alyssa Griffin ◽  
...  

Abstract Seagrass systems are integral components of both local and global carbon cycles and can substantially modify seawater biogeochemistry, which has ecological ramifications. However, the influence of seagrass on porewater biogeochemistry has not been fully described, and the exact role of this marine macrophyte and associated microbial communities in the modification of porewater chemistry remains equivocal. In the present study, carbonate chemistry in the water column and porewater was investigated over diel timescales in contrasting, tidally influenced seagrass systems in Southern California and Bermuda, including vegetated (Zostera marina) and unvegetated biomes (0–16 cm) in Mission Bay, San Diego, USA and a vegetated system (Thallasia testudinium) in Mangrove Bay, Ferry Reach, Bermuda. In Mission Bay, dissolved inorganic carbon (DIC) and total alkalinity (TA) exhibited strong increasing gradients with sediment depth. Vertical porewater profiles differed between the sites, with almost twice as high concentrations of DIC and TA observed in the vegetated compared to the unvegetated sediments. In Mangrove Bay, both the range and vertical profiles of porewater carbonate parameters such as DIC and TA were much lower and, in contrast to Mission Bay where no distinct temporal signal was observed, biogeochemical parameters followed the semi-diurnal tidal signal in the water column. The observed differences between the study sites most likely reflect a differential influence of biological (biomass, detritus and infauna) and physical processes (e.g., sediment permeability, residence time and mixing) on porewater carbonate chemistry in the different settings.


2009 ◽  
Vol 6 (10) ◽  
pp. 2145-2153 ◽  
Author(s):  
K. G. Schulz ◽  
J. Barcelos e Ramos ◽  
R. E. Zeebe ◽  
U. Riebesell

Abstract. Increasing atmospheric carbon dioxide (CO2) through human activities and invasion of anthropogenic CO2 into the surface ocean alters the seawater carbonate chemistry, increasing CO2 and bicarbonate (HCO3−) at the expense of carbonate ion (CO32−) concentrations. This redistribution in the dissolved inorganic carbon (DIC) pool decreases pH and carbonate saturation state (Ω). Several components of the carbonate system are considered potential key variables influencing for instance calcium carbonate precipitation in marine calcifiers such as coccolithophores, foraminifera, corals, mollusks and echinoderms. Unravelling the sensitivities of marine organisms and ecosystems to CO2 induced ocean acidification (OA) requires well-controlled experimental setups and accurate carbonate system manipulations. Here we describe and analyse the chemical changes involved in the two basic approaches for carbonate chemistry manipulation, i.e. changing DIC at constant total alkalinity (TA) and changing TA at constant DIC. Furthermore, we briefly introduce several methods to experimentally manipulate DIC and TA. Finally, we examine responses obtained with both approaches using published results for the coccolithophore Emiliania huxleyi. We conclude that under most experimental conditions in the context of ocean acidification DIC and TA manipulations yield similar changes in all parameters of the carbonate system, which implies direct comparability of data obtained with the two basic approaches for CO2 perturbation.


2012 ◽  
Vol 25 (3) ◽  
pp. 421-432 ◽  
Author(s):  
Michael Fischer ◽  
David N. Thomas ◽  
Andreas Krell ◽  
Gernot Nehrke ◽  
Jörg Göttlicher ◽  
...  

AbstractCalcium carbonate precipitation in sea ice is thought to potentially drive significant CO2 uptake by the ocean. However, little is known about the quantitative spatial and temporal distribution of CaCO3 within sea ice, although it is hypothesized that high quantities of dissolved organic matter and/or phosphate (common in sea ice) may inhibit its formation. In this quantitative study of hydrous calcium carbonate as ikaite, sea ice cores and brine samples were collected from pack and land fast sea ice between September and December 2007 during two expeditions, one in the East Antarctic sector and the other off Terre Adélie. Samples were analysed for CaCO3, salinity, dissolved organic carbon/nitrogen, inorganic phosphate, and total alkalinity. No relationship between these parameters and CaCO3 precipitation was evident. Ikaite was found mostly in the uppermost layers of sea ice with maximum concentrations of up to 126 mg ikaite per litre melted sea ice being measured, although both the temporal and horizontal spatial distributions of ikaite were highly heterogeneous. The precipitate was also found in the snow on top of the sea ice at some of the sampling locations.


2016 ◽  
Vol 10 (5) ◽  
pp. 2173-2189 ◽  
Author(s):  
Nicolas-Xavier Geilfus ◽  
Ryan J. Galley ◽  
Brent G. T. Else ◽  
Karley Campbell ◽  
Tim Papakyriakou ◽  
...  

Abstract. The precipitation of ikaite and its fate within sea ice is still poorly understood. We quantify temporal inorganic carbon dynamics in sea ice from initial formation to its melt in a sea ice–seawater mesocosm pool from 11 to 29 January 2013. Based on measurements of total alkalinity (TA) and total dissolved inorganic carbon (TCO2), the main processes affecting inorganic carbon dynamics within sea ice were ikaite precipitation and CO2 exchange with the atmosphere. In the underlying seawater, the dissolution of ikaite was the main process affecting inorganic carbon dynamics. Sea ice acted as an active layer, releasing CO2 to the atmosphere during the growth phase, taking up CO2 as it melted and exporting both ikaite and TCO2 into the underlying seawater during the whole experiment. Ikaite precipitation of up to 167 µmolkg−1 within sea ice was estimated, while its export and dissolution into the underlying seawater was responsible for a TA increase of 64–66 µmolkg−1 in the water column. The export of TCO2 from sea ice to the water column increased the underlying seawater TCO2 by 43.5 µmolkg−1, suggesting that almost all of the TCO2 that left the sea ice was exported to the underlying seawater. The export of ikaite from the ice to the underlying seawater was associated with brine rejection during sea ice growth, increased vertical connectivity in sea ice due to the upward percolation of seawater and meltwater flushing during sea ice melt. Based on the change in TA in the water column around the onset of sea ice melt, more than half of the total ikaite precipitated in the ice during sea ice growth was still contained in the ice when the sea ice began to melt. Ikaite crystal dissolution in the water column kept the seawater pCO2 undersaturated with respect to the atmosphere in spite of increased salinity, TA and TCO2 associated with sea ice growth. Results indicate that ikaite export from sea ice and its dissolution in the underlying seawater can potentially hamper the effect of oceanic acidification on the aragonite saturation state (Ωaragonite) in fall and in winter in ice-covered areas, at the time when Ωaragonite is smallest.


Elem Sci Anth ◽  
2016 ◽  
Vol 4 ◽  
Author(s):  
R. Grimm ◽  
D. Notz ◽  
R.N. Glud ◽  
S. Rysgaard ◽  
K.D. Six

Abstract It has been suggested that geochemical processes related to sea-ice growth and melt might be important for the polar carbon cycle via the so called sea-ice carbon pump (SICP). The SICP affects the air-sea CO2 exchange by influencing the composition of dissolved inorganic carbon (DIC) and total alkalinity (TA) in the surface ocean. Here we quantify the strength of the SICP-induced air-sea CO2 flux using the global three-dimensional ocean-sea-ice-biogeochemical model MPIOM/HAMOCC. Simulations prescribing the range of observed DIC and TA concentrations in the sea ice were performed under two idealized climate scenarios for the present-day and the future oceanic and sea-ice state, both forced with a fixed atmospheric CO2 concentration. Model results indicate that the SICP-induced air-sea CO2 uptake increases with higher ratios of TA:DIC prescribed in the sea ice relative to the basic oceanic TA:DIC ratios. Independent of the modeled scenario, the simulated strength of the SICP is larger in the Antarctic than in the Arctic, because of more efficient export of brine-associated DIC from the Antarctic mixed layer. On an annual basis, we generally find an enhanced SICP-induced oceanic CO2 uptake in regions with net sea-ice melt, and enhanced SICP-induced oceanic CO2 out-gassing in regions with net sea-ice growth. These general regional patterns are modified further by the blockage of air-sea gas exchange through sea-ice coverage. Integrated over the sea-ice zones of both hemispheres, the SICP-induced oceanic CO2 uptake ranges from 2 to 14 Tg C yr−1, which is up to 7% of the simulated net CO2 uptake in polar regions, but far less than 1% of the current global oceanic CO2 uptake. Hence, while we find that the SICP plays a minor role in the modern global carbon cycle, it is of importance for the regional carbon cycle at high latitudes.


1985 ◽  
Vol 6 ◽  
pp. 200-202 ◽  
Author(s):  
Masaaki Wakatsuchi ◽  
Takashi Saito

This paper describes characteristic features of brine channels observed both macroscopically and microscopically using samples of natural sea ice. Systematic observations of brine channels, including the effects of ice growth rate and ice thickness, provide knowledge of their spatial distribution in young sea ice.


Elem Sci Anth ◽  
2016 ◽  
Vol 4 ◽  
Author(s):  
Sébastien Moreau ◽  
Martin Vancoppenolle ◽  
Laurent Bopp ◽  
Oliver Aumont ◽  
Gurvan Madec ◽  
...  

Abstract The role of sea ice in the carbon cycle is minimally represented in current Earth System Models (ESMs). Among potentially important flaws, mentioned by several authors and generally overlooked during ESM design, is the link between sea-ice growth and melt and oceanic dissolved inorganic carbon (DIC) and total alkalinity (TA). Here we investigate whether this link is indeed an important feature of the marine carbon cycle misrepresented in ESMs. We use an ocean general circulation model (NEMO-LIM-PISCES) with sea-ice and marine carbon cycle components, forced by atmospheric reanalyses, adding a first-order representation of DIC and TA storage and release in/from sea ice. Our results suggest that DIC rejection during sea-ice growth releases several hundred Tg C yr−1 to the surface ocean, of which < 2% is exported to depth, leading to a notable but weak redistribution of DIC towards deep polar basins. Active carbon processes (mainly CaCO3 precipitation but also ice-atmosphere CO2 fluxes and net community production) increasing the TA/DIC ratio in sea-ice modified ocean-atmosphere CO2 fluxes by a few Tg C yr−1 in the sea-ice zone, with specific hemispheric effects: DIC content of the Arctic basin decreased but DIC content of the Southern Ocean increased. For the global ocean, DIC content increased by 4 Tg C yr−1 or 2 Pg C after 500 years of model run. The simulated numbers are generally small compared to the present-day global ocean annual CO2 sink (2.6 ± 0.5 Pg C yr−1). However, sea-ice carbon processes seem important at regional scales as they act significantly on DIC redistribution within and outside polar basins. The efficiency of carbon export to depth depends on the representation of surface-subsurface exchanges and their relationship with sea ice, and could differ substantially if a higher resolution or different ocean model were used.


1993 ◽  
Vol 18 ◽  
pp. 97-101 ◽  
Author(s):  
Toshiyuki Κawamura ◽  
Κay I. Ohshima ◽  
Syuki Ushio ◽  
Takatoshi Takizawa

A two-year study was conducted on the growth processes of sea ice in Ongul Strait, Antarctica. Routine measurements of snow depth and ice thickness were made and sea-ice cores were collected to assess their structure, temperature and salinity. The snow depth varied from 0 to about 1 m. In the winter months, the growth rate is higher in bare-ice regions than in snow-covered regions. However, over the year, the ice thickness itself is lower in the bare-ice regions than in the snow-covered regions. Sea ice in the snow-covered regions increased in thickness in spring rather than in winter, due to the formation of snow-ice and by ice formation related to the melting of snow cover.


1993 ◽  
Vol 18 ◽  
pp. 97-101 ◽  
Author(s):  
Toshiyuki Κawamura ◽  
Κay I. Ohshima ◽  
Syuki Ushio ◽  
Takatoshi Takizawa

A two-year study was conducted on the growth processes of sea ice in Ongul Strait, Antarctica. Routine measurements of snow depth and ice thickness were made and sea-ice cores were collected to assess their structure, temperature and salinity. The snow depth varied from 0 to about 1 m. In the winter months, the growth rate is higher in bare-ice regions than in snow-covered regions. However, over the year, the ice thickness itself is lower in the bare-ice regions than in the snow-covered regions. Sea ice in the snow-covered regions increased in thickness in spring rather than in winter, due to the formation of snow-ice and by ice formation related to the melting of snow cover.


Sign in / Sign up

Export Citation Format

Share Document