scholarly journals Surface energy budget on Larsen and Wilkins ice shelves in the Antarctic Peninsula: results based on reanalyses in 1989–2010

2014 ◽  
Vol 8 (4) ◽  
pp. 1519-1538 ◽  
Author(s):  
I. Välisuo ◽  
T. Vihma ◽  
J. C. King

Abstract. Ice shelves in the Antarctic Peninsula have significantly disintegrated during recent decades. To better understand the atmospheric contribution in the process, we have analysed the inter-annual variations in radiative and turbulent surface fluxes and weather conditions over Larsen C Ice Shelf (LCIS) and Wilkins Ice Shelf (WIS) in the Antarctic Peninsula in 1989–2010. Three atmospheric reanalyses were applied: ERA-Interim by ECMWF, Climate Forecast System Reanalysis (CFSR) by NCEP, and JRA-25/JCDAS by the Japan Meteorological Agency. In addition, in situ observations from an automatic weather station (AWS) on LCIS were applied, mainly for validation of the reanalyses. The AWS observations on LCIS did not show any significant temperature trend, and the reanalyses showed warming trends only over WIS: ERA-Interim in winter (0.23 °C yr−1) and JRA-25/JCDAS in autumn (0.13 °C yr−1). In LCIS from December through August and in WIS from March through August, the variations of surface net flux were partly explained by the combined effects of atmospheric pressure, wind and cloud fraction. The explained variance was much higher in LCIS (up to 80%) than in WIS (26–27%). Summer melting on LCIS varied between 11 and 58 cm water equivalent (w.e.), which is comparable to previous results. The mean amount of melt days per summer on LCIS was 69. The high values of melting in summer 2001–2002 presented in previous studies on the basis of simple calculations were not supported by our study. Instead, our calculations based on ERA-Interim yielded strongest melting in summer 1992–1993 on both ice shelves. On WIS the summer melting ranged between 10 and 23 cm w.e., and the peak values coincided with the largest disintegrations of the ice shelf. The amount of melt on WIS may, however, be underestimated by ERA-Interim, as previously published satellite observations suggest that it suffers from a significant bias over WIS.

2013 ◽  
Vol 7 (2) ◽  
pp. 1269-1311
Author(s):  
I. Välisuo ◽  
T. Vihma ◽  
J. C. King

Abstract. Ice shelves in the Antarctic Peninsula have significantly disintegrated during the recent decades. To better understand the atmospheric contribution in the process, we have analysed the inter-annual variations in radiative and turbulent surface fluxes and weather conditions over Larsen C Ice Shelf (LCIS) and Wilkins Ice Shelf (WIS) in the Antarctic Peninsula in 1989–2010. Three atmospheric reanalyses were applied: ERA-Interim by ECMWF, Climate Forecast System Reanalysis (CFSR) by NCEP, and JRA-25/JCDAS by the Japan Meteorological Agency. In addition, in situ observations from an automatic weather station (AWS) on LCIS were applied, mainly for validation of the reanalyses. The AWS observations on LCIS did not show any significant temperature trend, and the reanalyses showed warming trends only over WIS: ERA-Interim in winter (0.23 °C yr−1) and JRA in autumn (0.13 °C yr−1). In LCIS from December through August and in WIS from March through August, the variations of surface net flux were partly explained by the combined effects of atmospheric pressure, wind, and cloud fraction. The explained variance was much higher in LCIS (up to 80%) than in WIS (26–27%). Summer melting on LCIS varied between 0 and 45 cm water equivalent (w.e.), which is comparable to previous results. The mean amount of melt days per summer on LCIS was only 17. The high values of melting in summer 2001–2002 presented in previous studies on the basis of simple calculations were not supported by our study. Instead, our calculations based on ERA-Interim yielded strongest melting in summer 1992–1993 on both ice shelves. On WIS the summer melting ranged between 2 and 40 cm w.e., and the peak values coincided with the largest disintegrations of the ice shelf.


2010 ◽  
Vol 51 (55) ◽  
pp. 97-102 ◽  
Author(s):  
J. Wendt ◽  
A. Rivera ◽  
A. Wendt ◽  
F. Bown ◽  
R. Zamora ◽  
...  

AbstractRegional climate warming has caused several ice shelves on the Antarctic Peninsula to retreat and ultimately collapse during recent decades. Glaciers flowing into these retreating ice shelves have responded with accelerating ice flow and thinning. The Wordie Ice Shelf on the west coast of the Antarctic Peninsula was reported to have undergone a major areal reduction before 1989. Since then, this ice shelf has continued to retreat and now very little floating ice remains. Little information is currently available regarding the dynamic response of the glaciers feeding the Wordie Ice Shelf, but we describe a Chilean International Polar Year project, initiated in 2007, targeted at studying the glacier dynamics in this area and their relationship to local meteorological conditions. Various data were collected during field campaigns to Fleming Glacier in the austral summers of 2007/08 and 2008/09. In situ measurements of ice-flow velocity first made in 1974 were repeated and these confirm satellite-based assessments that velocity on the glacier has increased by 40–50% since 1974. Airborne lidar data collected in December 2008 can be compared with similar data collected in 2004 in collaboration with NASA and the Chilean Navy. This comparison indicates continued thinning of the glacier, with increasing rates of thinning downstream, with a mean of 4.1 ± 0.2 m a−1 at the grounding line of the glacier. These comparisons give little indication that the glacier is achieving a new equilibrium.


2013 ◽  
Vol 7 (3) ◽  
pp. 797-816 ◽  
Author(s):  
T. O. Holt ◽  
N. F. Glasser ◽  
D. J. Quincey ◽  
M. R. Siegfried

Abstract. George VI Ice Shelf (GVIIS) is located on the Antarctic Peninsula, a region where several ice shelves have undergone rapid breakup in response to atmospheric and oceanic warming. We use a combination of optical (Landsat), radar (ERS 1/2 SAR) and laser altimetry (GLAS) datasets to examine the response of GVIIS to environmental change and to offer an assessment on its future stability. The spatial and structural changes of GVIIS (ca. 1973 to ca. 2010) are mapped and surface velocities are calculated at different time periods (InSAR and optical feature tracking from 1989 to 2009) to document changes in the ice shelf's flow regime. Surface elevation changes are recorded between 2003 and 2008 using repeat track ICESat acquisitions. We note an increase in fracture extent and distribution at the south ice front, ice-shelf acceleration towards both the north and south ice fronts and spatially varied negative surface elevation change throughout, with greater variations observed towards the central and southern regions of the ice shelf. We propose that whilst GVIIS is in no imminent danger of collapse, it is vulnerable to ongoing atmospheric and oceanic warming and is more susceptible to breakup along its southern margin in ice preconditioned for further retreat.


2013 ◽  
Vol 7 (1) ◽  
pp. 373-417 ◽  
Author(s):  
T. O. Holt ◽  
N. F. Glasser ◽  
D. J. Quincey ◽  
M. R. Siegfried

Abstract. George VI Ice Shelf (GVIIS) is located on the Antarctic Peninsula, a region where several ice shelves have undergone rapid breakup in response to atmospheric and oceanic warming. We use a combination of optical (Landsat), radar (ERS 1/2 SAR) and laser altimetry (GLAS) datasets to examine the response of GVIIS to environmental change and to offer an assessment on its future stability. The spatial and structural changes of GVIIS (ca. 1973 to ca. 2010) are mapped and surface velocities are calculated at different time periods (InSAR and optical feature tracking from 1989 to 2009) to document changes in the ice shelf's flow regime. Surface elevation changes are recorded between 2003 and 2008 using repeat track ICESat acquisitions. We note an increase in fracture extent and distribution at the south ice front, ice-shelf acceleration towards both the north and south ice fronts and spatially varied negative surface elevation change throughout, with greater variations observed towards the central and southern regions of the ice shelf. We propose that whilst GVIIS is in no imminent danger of collapse, it is vulnerable to on-going atmospheric and oceanic warming and is more susceptible to breakup along its southern margin in ice preconditioned for further retreat.


2014 ◽  
Vol 14 (18) ◽  
pp. 9481-9509 ◽  
Author(s):  
D. P. Grosvenor ◽  
J. C. King ◽  
T. W. Choularton ◽  
T. Lachlan-Cope

Abstract. Mesoscale model simulations are presented of a westerly föhn event over the Antarctic Peninsula mountain ridge and onto the Larsen C ice shelf, just south of the recently collapsed Larsen B ice shelf. Aircraft observations showed the presence of föhn jets descending near the ice shelf surface with maximum wind speeds at 250–350 m in height. Surface flux measurements suggested that melting was occurring. Simulated profiles of wind speed, temperature and wind direction were very similar to the observations. However, the good match only occurred at a model time corresponding to ~9 h before the aircraft observations were made since the model föhn jets died down after this. This was despite the fact that the model was nudged towards analysis for heights greater than ~1.15 km above the surface. Timing issues aside, the otherwise good comparison between the model and observations gave confidence that the model flow structure was similar to that in reality. Details of the model jet structure are explored and discussed and are found to have ramifications for the placement of automatic weather station (AWS) stations on the ice shelf in order to detect föhn flow. Cross sections of the flow are also examined and were found to compare well to the aircraft measurements. Gravity wave breaking above the mountain crest likely created a~situation similar to hydraulic flow and allowed föhn flow and ice shelf surface warming to occur despite strong upwind blocking, which in previous studies of this region has generally not been considered. Our results therefore suggest that reduced upwind blocking, due to wind speed increases or stability decreases, might not result in an increased likelihood of föhn events over the Antarctic Peninsula, as previously suggested. The surface energy budget of the model during the melting periods showed that the net downwelling short-wave surface flux was the largest contributor to the melting energy, indicating that the cloud clearing effect of föhn events is likely to be the most important factor for increased melting relative to non-föhn days. The results also indicate that the warmth of the föhn jets through sensible heat flux ("SH") may not be critical in causing melting beyond boundary layer stabilisation effects (which may help to prevent cloud cover and suppress loss of heat by convection) and are actually cancelled by latent heat flux ("LH") effects (snow ablation). It was found that ground heat flux ("GRD") was likely to be an important factor when considering the changing surface energy budget for the southern regions of the ice shelf as the climate warms.


1993 ◽  
Vol 17 ◽  
pp. 211-218 ◽  
Author(s):  
D.G. Vaughan ◽  
D.R. Mantripp ◽  
J. Sievers ◽  
C.S.M. Doake

Wilkins Ice Shelf has an area of 16000 km2 and lies off the west coast of the Antarctic Peninsula bounded by Alexander, Latady, Charcot and Rothschild islands. Several ice shelves, including Wilkins, exist close to a climatic limit of viability. The recent disintegration of the neighbouring Wordie Ice Shelf has been linked to atmopsheric warming observed on the Antarctic Peninsula. The limit of ice-shelf viability thus appears to have migrated south. Should this continue, the question arises; how long will Wilkins Ice Shelf survive?Compared with the other ice shelves on the Antarctic Peninsula, few surface glaciological data have been collected on Wilkins Ice Shelf. We compare, contrast and combine a variety of remotely sensed data: the recently declassified GEOSAT Geodetic Mission altimetry, Landsat MSS and TM imagery, and radio-echo sounding data (RES), to study its structure and mass balance regime.We find that this shelf has an unusual mass balance regime and relies heavily for sustenance on in situ accumulation. Its response to a continued atmospheric warming may be significantly different from that of Wordie Ice Shelf. Wordie Ice Shelf was fed by several dynamic outlet glaciers which accelerated the disintegration process when the ice shelf fractured. Wilkins Ice Shelf by contrast is almost stagnant and is expected to respond by normal calving at the ice front. Changes in the accumulation rate or basal melt-rate may, however, dominate any dynamic effect. Over the last two decades the ice front positions have remained stable.


1984 ◽  
Vol 30 (106) ◽  
pp. 289-295 ◽  
Author(s):  
John M. Reynolds ◽  
J. G. Paren

AbstractGeoresistivity soundings have been carried out at four sites in the Antarctic Peninsula. The objective of the work was to investigate the electrical behaviour of ice from an area where substantial melting occurs in summer and from contrasting thermal regimes. Electrical measurements made at three sites along a flow line within George VI Ice Shelf reveal that:(a)the resistivity of deep ice is similar to that of other Antarctic ice shelves,(b)the resistivity of the ice-shelf surface, which is affected by the percolation and refreezing of melt water, is similar to that of deep ice and hence the ice is polar in character.A compilation of published resistivities of deep ice from polar regions shows that the range of resistivities is very narrow (0.4 –2.0) x 105Ω m between –2 and – 29°C, irrespective of the physical setting and history of the ice. Typically, resistivity is within a factor of two of 80 kΩ m at –20° C with an activation energy of 0.22 eV. In contrast, the resistivity of surface ice at Wormald Ice Piedmont, where the ice is at 0°C throughout, is two orders of magnitude higher and falls at the lower end of the range of resistivities for temperate ice.


2017 ◽  
Vol 17 (17) ◽  
pp. 10195-10221 ◽  
Author(s):  
Constantino Listowski ◽  
Tom Lachlan-Cope

Abstract. The first intercomparisons of cloud microphysics schemes implemented in the Weather Research and Forecasting (WRF) mesoscale atmospheric model (version 3.5.1) are performed on the Antarctic Peninsula using the polar version of WRF (Polar WRF) at 5 km resolution, along with comparisons to the British Antarctic Survey's aircraft measurements (presented in part 1 of this work; Lachlan-Cope et al., 2016). This study follows previous works suggesting the misrepresentation of the cloud thermodynamic phase in order to explain large radiative biases derived at the surface in Polar WRF continent-wide (at 15 km or coarser horizontal resolution) and in the Polar WRF-based operational forecast model Antarctic Mesoscale Prediction System (AMPS) over the Larsen C Ice Shelf at 5 km horizontal resolution. Five cloud microphysics schemes are investigated: the WRF single-moment five-class scheme (WSM5), the WRF double-moment six-class scheme (WDM6), the Morrison double-moment scheme, the Thompson scheme, and the Milbrandt–Yau double-moment seven-class scheme. WSM5 (used in AMPS) and WDM6 (an upgrade version of WSM5) lead to the largest biases in observed supercooled liquid phase and surface radiative biases. The schemes simulating clouds in closest agreement to the observations are the Morrison, Thompson, and Milbrandt schemes for their better average prediction of occurrences of clouds and cloud phase. Interestingly, those three schemes are also the ones allowing for significant reduction of the longwave surface radiative bias over the Larsen C Ice Shelf (eastern side of the peninsula). This is important for surface energy budget consideration with Polar WRF since the cloud radiative effect is more pronounced in the infrared over icy surfaces. Overall, the Morrison scheme compares better to the cloud observation and radiation measurements. The fact that WSM5 and WDM6 are single-moment parameterizations for the ice crystals is responsible for their lesser ability to model the supercooled liquid clouds compared to the other schemes. However, our investigation shows that all the schemes fail at simulating the supercooled liquid mass at some temperatures (altitudes) where observations show evidence of its persistence. An ice nuclei parameterization relying on both temperature and aerosol content like DeMott et al. (2010) (not currently used in WRF cloud schemes) is in best agreement with the observations, at temperatures and aerosol concentration characteristic of the Antarctic Peninsula where the primary ice production occurs (part 1), compared to parameterization only relying on the atmospheric temperature (used by the WRF cloud schemes). Overall, a realistic double-moment ice microphysics implementation is needed for the correct representation of the supercooled liquid phase in Antarctic clouds. Moreover, a more realistic ice-nucleating particle alone is not enough to improve the cloud modelling, and water vapour and temperature biases also need to be further investigated and reduced.


2020 ◽  
Author(s):  
Frazer Christie ◽  
Toby Benham ◽  
Julian Dowdeswell

<p>The Antarctic Peninsula is one of the most rapidly warming regions on Earth. There, the recent destabilization of the Larsen A and B ice shelves has been directly attributed to this warming, in concert with anomalous changes in ocean circulation. Having rapidly accelerated and retreated following the demise of Larsen A and B, the inland glaciers once feeding these ice shelves now form a significant proportion of Antarctica’s total contribution to global sea-level rise, and have become an exemplar for the fate of the wider Antarctic Ice Sheet under a changing climate. Together with other indicators of glaciological instability observable from satellites, abrupt pre-collapse changes in ice shelf terminus position are believed to have presaged the imminent disintegration of Larsen A and B, which necessitates the need for routine, close observation of this sector in order to accurately forecast the future stability of the Antarctic Peninsula Ice Sheet. To date, however, detailed records of ice terminus position along this region of Antarctica only span the observational period c.1950 to 2008, despite several significant changes to the coastline over the last decade, including the calving of giant iceberg A-68a from Larsen C Ice Shelf in 2017.</p><p>Here, we present high-resolution, annual records of ice terminus change along the entire western Weddell Sea Sector, extending southwards from the former Larsen A Ice Shelf on the eastern Antarctic Peninsula to the periphery of Filchner Ice Shelf. Terminus positions were recovered primarily from Sentinel-1a/b, TerraSAR-X and ALOS-PALSAR SAR imagery acquired over the period 2009-2019, and were supplemented with Sentinel-2a/b, Landsat 7 ETM+ and Landsat 8 OLI optical imagery across regions of complex terrain.</p><p>Confounding Antarctic Ice Sheet-wide trends of increased glacial recession and mass loss over the long-term satellite era, we detect glaciological advance along 83% of the ice shelves fringing the eastern Antarctic Peninsula between 2009 and 2019. With the exception of SCAR Inlet, where the advance of its terminus position is attributable to long-lasting ice dynamical processes following the disintegration of Larsen B, this phenomenon lies in close agreement with recent observations of unchanged or arrested rates of ice flow and thinning along the coastline. Global climate reanalysis and satellite passive-microwave records reveal that this spatially homogenous advance can be attributed to an enhanced buttressing effect imparted on the eastern Antarctic Peninsula’s ice shelves, governed primarily by regional-scale increases in the delivery and concentration of sea ice proximal to the coastline.</p>


2021 ◽  
Author(s):  
Jonathan Wille ◽  
Vincent Favier ◽  
Nicolas Jourdain ◽  
Christoph Kittel ◽  
Jenny Turton ◽  
...  

Abstract The disintegration of the ice shelves along the Antarctic Peninsula have spurred much discussion on the various processes leading to their eventual dramatic collapse, but without a consensus on an atmospheric forcing that could connect these processes. Here, using an atmospheric river (AR) detection algorithm along with a regional climate model and satellite observations, we show that particularly intense ARs have a ~40% probability of inducing extreme events of temperature, surface melt, sea-ice disintegration, or large swells; all processes proven to induce ice-shelf destabilization. This was observed during the collapses of the Larsen A, B, and overall, 60% of calving events triggered by ARs from 2000-2020. The loss of the buttressing effect from these ice shelves leads to further continental ice loss and subsequent sea-level rise. Understanding how ARs connect various disparate processes cited in ice-shelf collapse theories is essential for identifying other at-risk ice shelves like the Larsen C.


Sign in / Sign up

Export Citation Format

Share Document