scholarly journals Evaluation of Arctic Land Snow Cover Characteristics, Surface Albedo, and Temperature during the Transition Seasons from Regional Climate Model Simulations and Satellite Data

2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
X. Zhou ◽  
H. Matthes ◽  
A. Rinke ◽  
K. Klehmet ◽  
B. Heim ◽  
...  

This paper evaluates the simulated Arctic land snow cover duration, snow water equivalent, snow cover fraction, surface albedo, and land surface temperature in the regional climate model HIRHAM5 during 2008–2010, compared with various satellite and reanalysis data and one further regional climate model (COSMO-CLM). HIRHAM5 shows a general agreement in the spatial patterns and annual course of these variables, although distinct biases for specific regions and months are obvious. The most prominent biases occur for east Siberian deciduous forest albedo, which is overestimated in the simulation for snow covered conditions in spring. This may be caused by the simplified albedo parameterization (e.g., nonconsideration of different forest types and neglecting the effect of fallen leaves and branches on snow for deciduous tree forest). The land surface temperature biases mirror the albedo biases in their spatial and temporal structures. The snow cover fraction and albedo biases can explain the simulated land surface temperature bias of ca. −3°C over the Siberian forest area in spring.

2017 ◽  
Vol 18 (5) ◽  
pp. 1205-1225 ◽  
Author(s):  
Diana Verseghy ◽  
Ross Brown ◽  
Libo Wang

Abstract The Canadian Land Surface Scheme (CLASS), version 3.6.1, was run offline for the period 1990–2011 over a domain centered on eastern Canada, driven by atmospheric forcing data dynamically downscaled from ERA-Interim using the Canadian Regional Climate Model. The precipitation inputs were adjusted to replicate the monthly average precipitation reported in the CRU observational database. The simulated fractional snow cover and the surface albedo were evaluated using NOAA Interactive Multisensor Snow and Ice Mapping System and MODIS data, and the snow water equivalent was evaluated using CMC, Global Snow Monitoring for Climate Research (GlobSnow), and Hydro-Québec products. The modeled fractional snow cover agreed well with the observational estimates. The albedo of snow-covered areas showed a bias of up to −0.15 in boreal forest regions, owing to neglect of subgrid-scale lakes in the simulation. In June, conversely, there was a positive albedo bias in the remaining snow-covered areas, likely caused by neglect of impurities in the snow. The validation of the snow water equivalent was complicated by the fact that the three observation-based datasets differed widely. Also, the downward adjustment of the forcing precipitation clearly resulted in a low snow bias in some regions. However, where the density of the observations was high, the CLASS snow model was deemed to have performed well. Sensitivity tests confirmed the satisfactory behavior of the current parameterizations of snow thermal conductivity, snow albedo refreshment threshold, and limiting snow depth and underlined the importance of snow interception by vegetation. Overall, the study demonstrated the necessity of using a wide variety of observation-based datasets for model validation.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 709
Author(s):  
Gabriella Zsebeházi ◽  
Sándor István Mahó

Land surface models with detailed urban parameterization schemes provide adequate tools to estimate the impact of climate change in cities, because they rely on the results of the regional climate model, while operating on km scale at low cost. In this paper, the SURFEX land surface model driven by the evaluation and control runs of ALADIN-Climate regional climate model is validated over Budapest from the aspect of urban impact on temperature. First, surface temperature of SURFEX with forcings from ERA-Interim driven ALADIN-Climate was compared against the MODIS land surface temperature for a 3-year period. Second, the impact of the ARPEGE global climate model driven ALADIN-Climate was assessed on the 2 m temperature of SURFEX and was validated against measurements of a suburban station for 30 years. The spatial extent of surface urban heat island (SUHI) is exaggerated in SURFEX from spring to autumn, because the urbanized gridcells are generally warmer than their rural vicinity, while the observed SUHI extent is more variable. The model reasonably simulates the seasonal means and diurnal cycle of the 2 m temperature in the suburban gridpoint, except summer when strong positive bias occurs. However, comparing the two experiments from the aspect of nocturnal UHI, only minor differences arose. The thorough validation underpins the applicability of SURFEX driven by ALADIN-Climate for future urban climate projections.


2012 ◽  
Vol 6 (6) ◽  
pp. 4637-4671
Author(s):  
K. Klehmet ◽  
B. Geyer ◽  
B. Rockel

Abstract. This study analyzes the added value of a regional climate model hindcast of CCLM compared to global reanalyses in providing a reconstruction of recent past snow water equivalent (SWE) for Siberia. Consistent regional climate data in time and space is necessary due to lack of station data in that region. We focus on SWE since it represents an important snow cover parameter in a region where snow has the potential to feed back to the climate of the whole Northern Hemisphere. The simulation was performed in a 50 km grid spacing for the period 1948 to 2010 using NCEP Reanalysis 1 as boundary forcing. Daily observational reference data for the period of 1987–2010 was obtained by the satellite derived SWE product of ESA DUE GlobSnow that enables a large scale assessment. The analyses includes comparisons of the distribution of snow cover extent, example time series of monthly SWE for January and April, regional characteristics of long-term monthly mean, standard deviation and temporal correlation averaged over subregions. SWE of CCLM is compared against the SWE information of NCEP-R1 itself and three more reanalyses (NCEP-R2, NCEP-CFSR, ERA-Interim). We demonstrate a significant added value of the CCLM hindcast during snow accumulation period shown for January for many subregions compared to SWE of NCEP-R1. NCEP-R1 mostly underestimates SWE during whole snow season. CCLM overestimates SWE compared to the satellite-derived product during April – a month representing the beginning of snow melt in southern regions. We illustrate that SWE of the regional hindcast is more consistent in time than ERA-Interim and NCEP-R2 and thus add realistic detail.


2014 ◽  
Vol 15 (4) ◽  
pp. 1325-1343 ◽  
Author(s):  
A. Langlois ◽  
J. Bergeron ◽  
R. Brown ◽  
A. Royer ◽  
R. Harvey ◽  
...  

Abstract Snow cover simulations from versions 2.7 and 3.5 of the Canadian Land Surface Scheme (CLASS) coupled to the Canadian Regional Climate Model, version 4 (CRCM4), are evaluated over northern Québec and the larger Québec domain using in situ and remotely sensed datasets. Version 2.7 of CLASS has been used in the operational version of CRCM4 at Ouranos since 2006. Version 3.5 includes a number of improvements to the snow processes as well as a more realistic parameterization of snow thermal conductivity. The evaluation shows that version 3.5 provides improved simulations of snow water equivalent, density, depth, and snowpack temperature values. However, snowpack density still contains systematic biases during the snow season that need to be addressed. The snow albedo parameterization in CLASS was found to be very sensitive to an empirical snowfall rate threshold for albedo refreshment and does not keep track of the snow accumulation history in estimating the snow surface albedo. A modified albedo scheme based on snow-specific surface areas is proposed to address this problem.


2014 ◽  
Vol 15 (2) ◽  
pp. 614-630 ◽  
Author(s):  
Libo Wang ◽  
Murray MacKay ◽  
Ross Brown ◽  
Paul Bartlett ◽  
Richard Harvey ◽  
...  

Abstract This study evaluates key aspects of the snow cover, cloud cover, and radiation budget simulated by the Canadian Regional Climate Model, version 4 (CRCM4), coupled with two versions of the Canadian Land Surface Scheme (CLASS). CRCM4 coupled with CLASS version 2.7 has been used operationally at Ouranos since 2006, while, more recently, CRCM4 has been coupled experimentally with CLASS 3.5, which includes a number of improvements to the representation of snow cover processes. The simulations showed evidence of a systematic cold temperature bias. Evaluation of cloud cover and radiation fluxes with satellite data suggests this bias is related to insufficient cloud radiative forcing from a combination of underestimated cloud cover, excessive cloud albedo, and too low cloud emissivity in the model. This cold bias is reinforced by a positive snow albedo feedback manifest through earlier snow cover onset in the fall and early winter period. Snow albedo was found to be very sensitive to the treatment of albedo refresh but insignificantly influenced by the partitioning of solid precipitation in CLASS. This study demonstrates that atmospheric forcing can exert a significant impact on the simulation of snow cover and surface albedo. The results highlight the need to evaluate parameterizations in land surface models designed for climate models in fully coupled mode.


2015 ◽  
Vol 9 (5) ◽  
pp. 1879-1893 ◽  
Author(s):  
K. Atlaskina ◽  
F. Berninger ◽  
G. de Leeuw

Abstract. Thirteen years of Moderate Resolution Imaging Spectroradiometer (MODIS) surface albedo data for the Northern Hemisphere during the spring months (March–May) were analyzed to determine temporal and spatial changes over snow-covered land surfaces. Tendencies in land surface albedo change north of 50° N were analyzed using data on snow cover fraction, air temperature, vegetation index and precipitation. To this end, the study domain was divided into six smaller areas, based on their geographical position and climate similarity. Strong differences were observed between these areas. As expected, snow cover fraction (SCF) has a strong influence on the albedo in the study area and can explain 56 % of variation of albedo in March, 76 % in April and 92 % in May. Therefore the effects of other parameters were investigated only for areas with 100 % SCF. The second largest driver for snow-covered land surface albedo changes is the air temperature when it exceeds a value between −15 and −10 °C, depending on the region. At monthly mean air temperatures below this value no albedo changes are observed. The Enhanced Vegetation Index (EVI) and precipitation amount and frequency were independently examined as possible candidates to explain observed changes in albedo for areas with 100 % SCF. Amount and frequency of precipitation were identified to influence the albedo over some areas in Eurasia and North America, but no clear effects were observed in other areas. EVI is positively correlated with albedo in Chukotka Peninsula and negatively in eastern Siberia. For other regions the spatial variability of the correlation fields is too high to reach any conclusions.


2020 ◽  
Vol 12 (18) ◽  
pp. 3006
Author(s):  
Chaobin Yang ◽  
Fengqin Yan ◽  
Xuelei Lei ◽  
Xiuli Ding ◽  
Yue Zheng ◽  
...  

Land surface temperature (LST) is a crucial parameter in surface urban heat island (SUHI) studies. A better understanding of the driving mechanisms, influencing variations in LST dynamics, is required for the sustainable development of a city. This study used Changchun, a city in northeast China, as an example, to investigate the seasonal effects of different dominant driving factors on the spatial patterns of LST. Twelve Landsat 8 images were used to retrieve monthly LST, to characterize the urban thermal environment, and spectral mixture analysis was employed to estimate the effect of the driving factors, and correlation and linear regression analyses were used to explore their relationships. Results indicate that, (1) the spatial pattern of LST has dramatic monthly and seasonal changes. August has the highest mean LST of 38.11 °C, whereas December has the lowest (−19.12 °C). The ranking of SUHI intensity is as follows: summer (4.89 °C) > winter with snow cover (1.94 °C) > spring (1.16 °C) > autumn (0.89 °C) > winter without snow cover (−1.24 °C). (2) The effects of driving factors also have seasonal variations. The proportion of impervious surface area (ISA) in summer (49.01%) is slightly lower than those in spring (56.64%) and autumn (50.85%). Almost half of the area is covered with snow (43.48%) in winter. (3) The dominant factors are quite different for different seasons. LST possesses a positive relationship with ISA for all seasons and has the highest Pearson coefficient for summer (r = 0.89). For winter, the effect of vegetation on LST is not obvious, and snow becomes the dominant driving factor. Despite its small area proportion, water has the strongest cooling effect from spring to autumn, and has a warming effect in winter. (4) Human activities, such as agricultural burning, harvest, and different choices of crop species, could also affect the spatial patterns of LST.


2017 ◽  
Vol 866 ◽  
pp. 108-111
Author(s):  
Theerapan Saesong ◽  
Pakpoom Ratjiranukool ◽  
Sujittra Ratjiranukool

Numerical Weather Model called The Weather Research and Forecasting model, WRF, developed by National Center for Atmospheric Research (NCAR) is adapted to be regional climate model. The model is run to perform the daily mean air surface temperatures over northern Thailand in 2010. Boundery dataset provided by National Centers for Environmental Prediction, NCEP FNL, (Final) Operational Global Analysis data which are on 10 x 10. The simulated temperatures by WRF with four land surface options, i.e., no land surface scheme (option 0), thermal diffusion (option 1), Noah land-surface (option 2) and RUC land-surface (option 3) were compared against observational data from Thai Meteorological Department (TMD). Preliminary analysis indicated WRF simulations with Noah scheme were able to reproduce the most reliable daily mean temperatures over northern Thailand.


Sign in / Sign up

Export Citation Format

Share Document