scholarly journals Morphology and distribution of liquid inclusions in young sea ice as imaged by magnetic resonance

2013 ◽  
Vol 7 (5) ◽  
pp. 4977-5006 ◽  
Author(s):  
R. J. Galley ◽  
B. G. T. Else ◽  
N.-X. Geilfus ◽  
A. A. Hare ◽  
D. Isleifson ◽  
...  

Abstract. In order to determine the morphology and distribution of liquid inclusions in young sea ice, magnetic resonance imaging of an 18 cm sea ice core was done using a Siemens 3T TIM TRIO human scanner. The sample was stored at about −20 °C until the beginning of a constructive interference steady state gradient echo sequence which lasted four and a half min. Here we present the first three-dimensional reconstruction of a brine drainage channel network in young sea ice using magnetic resonance imaging. The magnetic resonance image sequence data presented here clearly illustrate that brine drainage channels are established relatively quickly during ice formation, and indicates the amount and location of vertical and horizontal fluid permeability in young sea ice. A simple analysis of the image sequence reveals that magnetic resonance imaging is useful in describing the vertical profile of liquid fraction that compares well to volumes calculated for similar sea ice temperatures. Future work in this vein may include three-dimensional magnetic resonance scans of sea ice cores at in situ temperatures using different magnetic resonance sequences in order to improve the observation of inclusions, though this will necessitate both access to a scanner and the construction of a cooling system compatible with a magnetic resonance imager.

Author(s):  
Hongzhang Zhu ◽  
Shi-Ting Feng ◽  
Xingqi Zhang ◽  
Zunfu Ke ◽  
Ruixi Zeng ◽  
...  

Background: Cutis Verticis Gyrata (CVG) is a rare skin disease caused by overgrowth of the scalp, presenting as cerebriform folds and wrinkles. CVG can be classified into two forms: primary (essential and non-essential) and secondary. The primary non-essential form is often associated with neurological and ophthalmological abnormalities, while the primary essential form occurs without associated comorbidities. Discussion: We report on a rare case of primary essential CVG with a 4-year history of normal-colored scalp skin mass in the parietal-occipital region without symptom in a 34-year-old male patient, retrospectively summarizing his pathological and Computer Tomography (CT) and magnetic resonance imaging (MRI) findings. The major clinical observations on the CT and MR sectional images include a thickened dermis and excessive growth of the scalp, forming the characteristic scalp folds. With the help of CT and MRI Three-dimensional (3D) reconstruction techniques, the characteristic skin changes could be displayed intuitively, providing more evidence for a diagnosis of CVG. At the 5-year followup, there were no obvious changes in the lesion. Conclusion: Based on our observations, we propose that not all patients with primary essential CVG need surgical intervention, and continuous clinical observation should be an appropriate therapy for those in stable condition.


2020 ◽  
Vol 10 (1) ◽  
pp. 14
Author(s):  
Cezary Grochowski ◽  
Kamil Jonak ◽  
Marcin Maciejewski ◽  
Andrzej Stępniewski ◽  
Mansur Rahnama-Hezavah

Purpose: The aim of this study was to assess the volumetry of the hippocampus in the Leber’s hereditary optic neuropathy (LHON) of blind patients. Methods: A total of 25 patients with LHON were randomly included into the study from the national health database. A total of 15 patients were selected according to the inclusion criteria. The submillimeter segmentation of the hippocampus was based on three-dimensional spoiled gradient recalled acquisition in steady state (3D-SPGR) BRAVO 7T magnetic resonance imaging (MRI) protocol. Results: Statistical analysis revealed that compared to healthy controls (HC), LHON subjects had multiple significant differences only in the right hippocampus, including a significantly higher volume of hippocampal tail (p = 0.009), subiculum body (p = 0.018), CA1 body (p = 0.002), hippocampal fissure (p = 0.046), molecular layer hippocampus (HP) body (p = 0.014), CA3 body (p = 0.006), Granule Cell (GC) and Molecular Layer (ML) of the Dentate Gyrus (DG)–GC ML DG body (p = 0.003), CA4 body (p = 0.001), whole hippocampal body (p = 0.018), and the whole hippocampus volume (p = 0.023). Discussion: The ultra-high-field magnetic resonance imaging allowed hippocampus quality visualization and analysis, serving as a powerful in vivo diagnostic tool in the diagnostic process and LHON disease course assessment. The study confirmed previous reports regarding volumetry of hippocampus in blind individuals.


2014 ◽  
Vol 124 (6) ◽  
pp. 1190-1197 ◽  
Author(s):  
Kim J. B. Notten ◽  
Kirsten B. Kluivers ◽  
Jurgen J. Fütterer ◽  
Karlijn J. Schweitzer ◽  
Jaap Stoker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document