scholarly journals Influence of meltwater input on the skill of decadal forecast of sea ice in the Southern Ocean

2014 ◽  
Vol 8 (4) ◽  
pp. 3563-3602
Author(s):  
V. Zunz ◽  
H. Goosse

Abstract. Recent studies have investigated the potential link between the freshwater input derived from the melting of the Antarctic ice sheet and the observed recent increase in sea ice extent in the Southern Ocean. In this study, we assess the impact of an additional freshwater flux on the trend in sea ice extent and concentration in a simulation with data assimilation, spanning the period 1850–2009, as well as in retrospective forecasts (hindcasts) initialised in 1980. In a simulation with data assimilation, including an additional freshwater flux that follows an autoregressive process improves the reconstruction of the trend in ice extent and concentration between 1980 and 2009. This is partly due to a better representation of the freshwater cycle in the Southern Ocean, but the additional flux could also compensate for some model deficiencies. In addition, it modifies the simulated mean state of the sea ice. A hindcast initialised from this shifted state has to be forced by an additional freshwater flux with an amplitude similar to the one included in the simulation with data assimilation in order to avoid a model drift. This points out the importance of the experimental design that has to be consistent between the simulation used to compute the initial state and the hindcast initialised from this initial state. The hindcast including this constant additional freshwater flux provides trends in sea ice extent and concentration that are in satisfying agreement with satellite observations. This thus constitutes encouraging results for sea ice predictions in the Southern Ocean. In our simulation, the positive trend in ice extent over the last 30 years is largely determined by the state of the system in the late 1970's. No increase in meltwater flux from Antarctica is required.

2015 ◽  
Vol 9 (2) ◽  
pp. 541-556 ◽  
Author(s):  
V. Zunz ◽  
H. Goosse

Abstract. Recent studies have investigated the potential link between the freshwater input derived from the melting of the Antarctic ice sheet and the observed recent increase in sea ice extent in the Southern Ocean. In this study, we assess the impact of an additional freshwater flux on the trend in sea ice extent and concentration in simulations with data assimilation, spanning the period 1850–2009, as well as in retrospective forecasts (hindcasts) initialised in 1980. In the simulations with data assimilation, the inclusion of an additional freshwater flux that follows an autoregressive process improves the reconstruction of the trend in ice extent and concentration between 1980 and 2009. This is linked to a better efficiency of the data assimilation procedure but can also be due to a better representation of the freshwater cycle in the Southern Ocean. The results of the hindcast simulations show that an adequate initial state, reconstructed thanks to the data assimilation procedure including an additional freshwater flux, can lead to an increase in the sea ice extent spanning several decades that is in agreement with satellite observations. In our hindcast simulations, an increase in sea ice extent is obtained even in the absence of any major change in the freshwater input over the last decades. Therefore, while the additional freshwater flux appears to play a key role in the reconstruction of the evolution of the sea ice in the simulation with data assimilation, it does not seem to be required in the hindcast simulations. The present work thus provides encouraging results for sea ice predictions in the Southern Ocean, as in our simulation the positive trend in ice extent over the last 30 years is largely determined by the state of the system in the late 1970s.


2012 ◽  
Vol 6 (5) ◽  
pp. 3539-3573 ◽  
Author(s):  
V. Zunz ◽  
H. Goosse ◽  
F. Massonnet

Abstract. Observations over the last 30 yr have shown that the sea ice extent in the Southern Ocean has slightly increased since 1979. Mechanisms responsible for this positive trend have not been well established yet and climate models are generally unable to simulate correctly this expansion. In this study, we focus on two related hypotheses that could explain the misrepresentation of the positive trend in sea ice extent by climate models: an unrealistic internal variability and an inadequate initialization of the system. For that purpose, we analyze the evolution of sea ice around the Antarctic simulated by 24 different general circulation models involved in the 5th Coupled Model Intercomparison Project (CMIP5). On the one hand, historical simulations, driven by external forcing and initialized without observations, are examined. They provide information about the mean state, the variability and the trend in sea ice extent simulated by each model. On the other hand, decadal prediction experiments, driven by external forcing and initialized with some observed fields, allow us to assess the impact of the representation of the observed initial state on the quality of model predictions. Our analyses show that CMIP5 models respond to the forcing, including the one induced by stratospheric ozone depletion, by reducing the sea ice cover in the Southern Ocean. Some simulations display an increase in sea ice extent. However, models strongly overestimate the variability of sea ice extent and the initialization methods currently used in models do not improve systematically the simulated trends in sea ice extent. On the basis of those results, a critical role of the internal variability in the observed increase in the sea ice extent in the Southern Ocean could not be ruled out but current models results appear inadequate to test more precisely this hypothesis.


2012 ◽  
Vol 5 (2) ◽  
pp. 1627-1667 ◽  
Author(s):  
P. Mathiot ◽  
C. König Beatty ◽  
T. Fichefet ◽  
H. Goosse ◽  
F. Massonnet ◽  
...  

Abstract. Short-term and decadal sea-ice prediction systems need a realistic initial state, generally obtained using ice-ocean model simulations with data assimilation. However, only sea-ice concentration and velocity data are currently assimilated. In this work, an Ensemble Kalman Filter system is used to assimilate observed ice concentration and freeboard (i.e. thickness of emerged sea ice) data into a global coupled ocean–sea-ice model. The impact and effectiveness of our data assimilation system is assessed in two steps: firstly, through the assimilation of synthetic data (i.e., model-generated data) and, secondly, through the assimilation of satellite data. While ice concentrations are available daily, freeboard data used in this study are only available during six one-month periods spread over 2005–2007. Our results show that the simulated Arctic and Antarctic sea-ice extents are improved by the assimilation of synthetic ice concentration data. Assimilation of synthetic ice freeboard data improves the simulated sea-ice thickness field. Using real ice concentration data enhances the model realism in both hemispheres. Assimilation of ice concentration data significantly improves the total hemispheric sea-ice extent all year long, especially in summer. Combining the assimilation of ice freeboard and concentration data leads to better ice thickness, but does not further improve the ice extent. Moreover, the improvements in sea-ice thickness due to the assimilation of ice freeboard remain visible well beyond the assimilation periods.


2012 ◽  
Vol 5 (6) ◽  
pp. 1501-1515 ◽  
Author(s):  
P. Mathiot ◽  
C. König Beatty ◽  
T. Fichefet ◽  
H. Goosse ◽  
F. Massonnet ◽  
...  

Abstract. Short-term and decadal sea-ice prediction systems need a realistic initial state, generally obtained using ice–ocean model simulations with data assimilation. However, only sea-ice concentration and velocity data are currently assimilated. In this work, an ensemble Kalman filter system is used to assimilate observed ice concentration and freeboard (i.e. thickness of emerged) data into a global coupled ocean–sea-ice model. The impact and effectiveness of our data assimilation system is assessed in two steps: firstly, through the use of synthetic data (i.e. model-generated data), and secondly, through the assimilation of real satellite data. While ice concentrations are available daily, freeboard data used in this study are only available during six one-month periods spread over 2005–2007. Our results show that the simulated Arctic and Antarctic sea-ice extents are improved by the assimilation of synthetic ice concentration data. Assimilation of synthetic ice freeboard data improves the simulated sea-ice thickness field. Using real ice concentration data enhances the model realism in both hemispheres. Assimilation of ice concentration data significantly improves the total hemispheric sea-ice extent all year long, especially in summer. Combining the assimilation of ice freeboard and concentration data leads to better ice thickness, but does not further improve the ice extent. Moreover, the improvements in sea-ice thickness due to the assimilation of ice freeboard remain visible well beyond the assimilation periods.


2014 ◽  
Vol 8 (2) ◽  
pp. 453-470 ◽  
Author(s):  
H. Goosse ◽  
V. Zunz

Abstract. The large natural variability of the Antarctic sea ice is a key characteristic of the system that might be responsible for the small positive trend in sea ice extent observed since 1979. In order to gain insight of the processes responsible for this variability, we have analysed in a control simulation performed with a coupled climate model a positive ice–ocean feedback that amplifies sea ice variations. When sea ice concentration increases in a region, in particular close to the ice edge, the mixed layer depth tends to decrease. This can be caused by a net inflow of ice, and thus of freshwater, that stabilizes the water column. A second stabilizing mechanism at interannual timescales is associated with the downward salt transport due to the seasonal cycle of ice formation: brine is released in winter and mixed over a deep layer while the freshwater flux caused by ice melting is included in a shallow layer, resulting in a net vertical transport of salt. Because of this stronger stratification due to the presence of sea ice, more heat is stored at depth in the ocean and the vertical oceanic heat flux is reduced, which contributes to maintaining a higher ice extent. This positive feedback is not associated with a particular spatial pattern. Consequently, the spatial distribution of the trend in ice concentration is largely imposed by the wind changes that can provide the initial perturbation. A positive freshwater flux could alternatively be the initial trigger but the amplitude of the final response of the sea ice extent is finally set up by the amplification related to the ice–ocean feedback. Initial conditions also have an influence as the chance to have a large increase in ice extent is higher if starting from a state characterized by a low value.


2020 ◽  
Author(s):  
Charles Pelletier ◽  
Lars Zipf ◽  
Konstanze Haubner ◽  
Hugues Goosse ◽  
Frank Pattyn ◽  
...  

<p>From 2016 on, observed tendencies of Southern Ocean sea surface temperatures and Antarctic sea ice extent (SIE) have shifted from cooling down (with SIE increase) to warming up (SIE decrease). This change of Southern Ocean surface thermal properties has been sustained since, which indicates that it is not solely due to the interannual variability of the atmosphere, but also to modifications in the ocean itself. Among other physical phenomena, the acceleration of continental ice shelf melt, through its subsequent impact on the Southern Ocean stratification, has been proposed as one of the potential meaningful drivers of the sea ice changes. Reciprocally, recent studies suggest that besides atmosphere forcings, the upper ocean thermal content bears significant impact on ice shelf melt rates and dynamics. Here we present a new circumpolar coupled Southern Ocean – Antarctic ice sheet configuration aiming at investigating the impact of this ocean – continental ice feedback, developed within the framework of the PARAMOUR project. Our setting relies on the ocean and sea ice model NEMO3.6-LIM3 sending ice shelf melt rates to the Antarctic ice sheet model f.ETISh v1.5, who in turn responds to it and provides updated ice shelf cavity geometry. Both technical aspects and first coupled results are presented.</p>


2013 ◽  
Vol 9 (2) ◽  
pp. 887-901 ◽  
Author(s):  
P. Mathiot ◽  
H. Goosse ◽  
X. Crosta ◽  
B. Stenni ◽  
M. Braida ◽  
...  

Abstract. From 10 to 8 ka BP (thousand years before present), paleoclimate records show an atmospheric and oceanic cooling in the high latitudes of the Southern Hemisphere. During this interval, temperatures estimated from proxy data decrease by 0.8 °C over Antarctica and 1.2 °C over the Southern Ocean. In order to study the causes of this cooling, simulations covering the early Holocene have been performed with the climate model of intermediate complexity LOVECLIM constrained to follow the signal recorded in climate proxies using a data assimilation method based on a particle filtering approach. The selected proxies represent oceanic and atmospheric surface temperature in the Southern Hemisphere derived from terrestrial, marine and glaciological records. Two mechanisms previously suggested to explain the 10–8 ka BP cooling pattern are investigated using the data assimilation approach in our model. The first hypothesis is a change in atmospheric circulation, and the second one is a cooling of the sea surface temperature in the Southern Ocean, driven in our experimental setup by the impact of an increased West Antarctic melting rate on ocean circulation. For the atmosphere hypothesis, the climate state obtained by data assimilation produces a modification of the meridional atmospheric circulation leading to a 0.5 °C Antarctic cooling from 10 to 8 ka BP compared to the simulation without data assimilation, without congruent cooling of the atmospheric and sea surface temperature in the Southern Ocean. For the ocean hypothesis, the increased West Antarctic freshwater flux constrainted by data assimilation (+100 mSv from 10 to 8 ka BP) leads to an oceanic cooling of 0.7 °C and a strengthening of Southern Hemisphere westerlies (+6%). Thus, according to our experiments, the observed cooling in Antarctic and the Southern Ocean proxy records can only be reconciled with the reconstructions by the combination of a modified atmospheric circulation and an enhanced freshwater flux.


2013 ◽  
Vol 7 (5) ◽  
pp. 4585-4632 ◽  
Author(s):  
H. Goosse ◽  
V. Zunz

Abstract. The large natural variability of the Antarctic sea ice is a key characteristic of the system that might be responsible for the small positive trend in sea ice extent observed since 1979. In order to gain insight in the processes responsible for this variability, we have analysed in a control simulation performed with a coupled climate model a strong positive ice-ocean feedback that amplifies sea ice variations. When sea ice concentration increases in a region, in particular close to the ice edge, the mixed layer depth tends to decrease. This can be caused by a net inflow of ice and thus of freshwater that stabilizes the water column. Another stabilizing mechanism at interannual time scales that appears more widespread in our simulation is associated with the downward salt transport due to the seasonal cycle of ice formation: brine is released in winter when ice is formed and mixed over a deep layer while the freshwater flux caused by ice melting is included in a shallow layer, resulting in a net vertical transport of salt. Because of this stronger stratification due to the presence of sea ice, more heat is stored at depth in the ocean and the vertical oceanic heat flux is reduced, which contributes to maintain a higher ice extent. This positive feedback is not associated with a particular spatial pattern. Consequently, the spatial distribution of the trend in ice concentration is largely imposed by the wind changes that can provide the initial perturbation. A positive freshwater flux could alternatively be the initial trigger but the amplitude of the final response of the sea ice extent is finally set up by the amplification related to ice-ocean feedback. Initial conditions have also an influence as the chance to have a large increase in ice extent is higher if starting from a state characterized by a low value.


2013 ◽  
Vol 7 (2) ◽  
pp. 451-468 ◽  
Author(s):  
V. Zunz ◽  
H. Goosse ◽  
F. Massonnet

Abstract. Observations over the last 30 yr have shown that the sea ice extent in the Southern Ocean has slightly increased since 1979. Mechanisms responsible for this positive trend have not been well established yet. In this study we tackle two related issues: is the observed positive trend compatible with the internal variability of the system, and do the models agree with what we know about the observed internal variability? For that purpose, we analyse the evolution of sea ice around the Antarctic simulated by 24 different general circulation models involved in the 5th Coupled Model Intercomparison Project (CMIP5), using both historical and hindcast experiments. Our analyses show that CMIP5 models respond to the forcing, including the one induced by stratospheric ozone depletion, by reducing the sea ice cover in the Southern Ocean. Some simulations display an increase in sea ice extent similar to the observed one. According to models, the observed positive trend is compatible with internal variability. However, models strongly overestimate the variance of sea ice extent and the initialization methods currently used in models do not improve systematically the simulated trends in sea ice extent. On the basis of those results, a critical role of the internal variability in the observed increase of sea ice extent in the Southern Ocean could not be ruled out, but current models results appear inadequate to test more precisely this hypothesis.


1997 ◽  
Vol 25 ◽  
pp. 111-115 ◽  
Author(s):  
Achim Stössel

This paper investigates the long-term impact of sea ice on global climate using a global sea-ice–ocean general circulation model (OGCM). The sea-ice component involves state-of-the-art dynamics; the ocean component consists of a 3.5° × 3.5° × 11 layer primitive-equation model. Depending on the physical description of sea ice, significant changes are detected in the convective activity, in the hydrographic properties and in the thermohaline circulation of the ocean model. Most of these changes originate in the Southern Ocean, emphasizing the crucial role of sea ice in this marginally stably stratified region of the world's oceans. Specifically, if the effect of brine release is neglected, the deep layers of the Southern Ocean warm up considerably; this is associated with a weakening of the Southern Hemisphere overturning cell. The removal of the commonly used “salinity enhancement” leads to a similar effect. The deep-ocean salinity is almost unaffected in both experiments. Introducing explicit new-ice thickness growth in partially ice-covered gridcells leads to a substantial increase in convective activity, especially in the Southern Ocean, with a concomitant significant cooling and salinification of the deep ocean. Possible mechanisms for the resulting interactions between sea-ice processes and deep-ocean characteristics are suggested.


Sign in / Sign up

Export Citation Format

Share Document