scholarly journals Flow angle measurement of a yawed turbine and comparison to models

Author(s):  
Tyler Gallant ◽  
David A. Johnson

Abstract. The torque generated by a wind turbine blade is dependent on several parameters, one of which is the angle of attack. Several models for predicting the angle of attack in yawed conditions have been proposed in the literature, but there is a lack of experimental data to use for direct validation. To address this problem, experiments were conducted under controlled conditions at the University of Waterloo Wind Generation Research Facility using a 3.4 m diameter test turbine. A five-hole pressure probe was installed in a modular 3D printed blade and was used to measure the angle of attack, α, as a function of several parameters. Local flow angle measurements for all azimuthal angles were obtained at radial positions of r / R = 0.55 and 0.72 at tip speed ratios (λ) of 5.0, 3.6, and 3.1. The yaw offset of the turbine was varied from −15° to +15°. Span-wise flow angle measurements are presented for the r / R = 0.55 cases, and show the variation in radial flow direction throughout yawed rotation. Experimental results were compared directly to angle of attack values calculated using a model proposed by Morote in 2015. Modeled values were found to be in close agreement with the experimental results. The angle of attack was shown to vary cyclically in the yawed case while remaining mostly constant when aligned with the flow, as expected. These five-hole probe measurements were also used to characterise the upstream flow profile. Wind speeds determined using the five-hole probe measurements are presented and are in agreement with measurements obtained in the wind facility during testing. The quality of results indicates the potential of the developed instrument for wind turbine measurements.

2009 ◽  
Vol 131 (3) ◽  
Author(s):  
S. Gómez-Iradi ◽  
R. Steijl ◽  
G. N. Barakos

This paper demonstrates the potential of a compressible Navier–Stokes CFD method for the analysis of horizontal axis wind turbines. The method was first validated against experimental data of the NREL/NASA-Ames Phase VI (Hand, et al., 2001, “Unsteady Aerodynamics Experiment Phase, VI: Wind Tunnel Test Configurations and Available Data Campaigns,” NREL, Technical Report No. TP-500-29955) wind-tunnel campaign at 7 m/s, 10 m/s, and 20 m/s freestreams for a nonyawed isolated rotor. Comparisons are shown for the surface pressure distributions at several stations along the blades as well as for the integrated thrust and torque values. In addition, a comparison between measurements and CFD results is shown for the local flow angle at several stations ahead of the wind turbine blades. For attached and moderately stalled flow conditions the thrust and torque predictions are fair, though improvements in the stalled flow regime are necessary to avoid overprediction of torque. Subsequently, the wind-tunnel wall effects on the blade aerodynamics, as well as the blade/tower interaction, were investigated. The selected case corresponded to 7 m/s up-wind wind turbine at 0 deg of yaw angle and a rotational speed of 72 rpm. The obtained results suggest that the present method can cope well with the flows encountered around wind turbines providing useful results for their aerodynamic performance and revealing flow details near and off the blades and tower.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Ravon Venters ◽  
Brian T. Helenbrook ◽  
Kenneth D. Visser

This study presents a numerical optimization of a ducted wind turbine (DWT) to maximize power output. The cross section of the duct was an Eppler 423 airfoil, which is a cambered airfoil with a high lift coefficient (CL). The rotor was modeled as an actuator disk, and the Reynolds-averaged Navier–Stokes (RANS) k–ε model was used to simulate the flow. The optimization determined the optimal placement and angle for the duct relative to the rotor disk, as well as the optimal coefficient of thrust for the rotor. It was determined that the optimal coefficient of thrust is similar to an open rotor in spite of the fact that the local flow velocity is modified by the duct. The optimal angle of attack of the duct was much larger than the separation angle of attack of the airfoil in a freestream. Large angles of attack did not induce separation on the duct because the expansion caused by the rotor disk helped keep the flow attached. For the same rotor area, the power output of the largest DWT was 66% greater than an open rotor. For the same total cross-sectional area of the entire device, the DWT also outperformed an open rotor, exceeding Betz's limit by a small margin.


Author(s):  
J. Lepicovsky ◽  
E. P. Braunscheidel

Effective active control of rotating stall in axial compressors requires detailed understanding of flow instabilities associated with this compressor regime. Newly designed miniature high frequency response total and static pressure probes as well as commercial thermoanemometric probes are suitable tools for this task. However, during the rotating stall cycle the probes are subjected to flow direction changes that are far larger than the range of probe incidence acceptance, and therefore probe data without a proper correction would misrepresent unsteady variations of flow parameters. A methodology, based on ensemble averaging, is proposed to circumvent this problem. In this approach the ensemble averaged signals acquired for various probe setting angles are segmented, and only the sections for probe setting angles close to the actual flow angle are used for signal recombination. The methodology was verified by excellent agreement between velocity distributions obtained from pressure probe data, and data measured with thermoanemometric probes. Vector plots of unsteady flow behavior during the rotating stall regime indicate reversed flow within the rotating stall cell that spreads over to adjacent rotor blade channels. Results of this study confirmed that the NASA Low Speed Axial Compressor (LSAC) while in a rotating stall regime at rotor design speed exhibits one stall cell that rotates at a speed equal to 50.6% of the rotor shaft speed.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 4012
Author(s):  
Wei Zhong ◽  
Wen Zhong Shen ◽  
Tong Guang Wang ◽  
Wei Jun Zhu

The angle of attack (AoA) is the key parameter when extracting the aerodynamic polar from the rotating blade sections of a wind turbine. However, the determination of AoA is not straightforward using computational fluid dynamics (CFD) or measurement. Since the incoming streamlines are bent because of the complex inductions of the rotor, discrepancies exist between various existing determination methods, especially in the tip region. In the present study, flow characteristics in the region near wind turbine blades are analyzed in detail using CFD results of flows past the NREL UAE Phase VI rotor. It is found that the local flow determining AOA changes rapidly in the vicinity of the blade. Based on this finding, the concepts of effective AoA as well as nominal AoA are introduced, leading to a new method of AOA determination. The new method has 5 steps: (1) Find the distributed vortices on the blade surface; (2) select two monitoring points per cross-section close to the aerodynamic center on both pressure and suction sides with an equal distance from the rotor plane; (3) subtract the blade self-induction from the velocity at each monitoring point; (4) average the velocity of the two monitoring points obtained in Step 3; (5) determine the AoA using the velocity obtained in Step 4. Since the monitoring points for the first time can be set very close to the aerodynamic center, leading to an excellent estimation of AoA. The aerodynamic polar extracted through determination of the effective AoA exhibits a consistent regularity for both the mid-board and tip sections, which has never been obtained by the existing determination methods.


2020 ◽  
Author(s):  
Mattia Stagnaro ◽  
Enrico Chinchella ◽  
Arianna Cauteruccio ◽  
Luca Giovanni Lanza

<p>Optical disdrometers are among the non-catching type instruments used to measure liquid and solid precipitation. The increasing use of such instruments in operational observations is due to their capability to provide additional information than the precipitation rate alone, like e.g. the particle size distribution and the fall velocity of hydrometeors. Furthermore, they are well suited to operate in unattended, automatic weather stations. Having no collector to catch the approaching hydrometeors, their outer shape strongly depends on the measuring principle exploited. The impact of wind on the measurement is therefore different from the typical undercatch that is expected from more traditional catching type precipitation gauges. In general, they are not axisymmetric and base the identification and classification of hydrometeors on the coupling of particle size and fall velocity characteristics, which can be affected by the wind and by the airflow deformation and turbulence produced by their bluff-body aerodynamic response. The focus of this work is the Thies Laser Precipitation Monitor (LPM), which uses an optical sensor to detect the obstruction of an infrared laser beam caused by the crossing hydrometeors. The reduction in the sensor output voltage is proportional to the drop dimension, while the duration of the reduction is proportional to the drop falling speed. This instrument presents a very complex and not axisymmetric outer shape that makes it difficult to qualitatively predict the flow pattern and requires to consider multiple wind directions and wind speeds. The airflow field was obtained with a Computational Fluid Dynamics (CFD) approach, by numerically solving the Reynolds Averaged Navier-Stokes equations with the k-ω SST turbulence closure model. Results are validated through local flow velocity measurements obtained in the DICCA wind tunnel. The Thies LPM® was placed in the measuring chamber of the wind tunnel (1.7 x 1.35 x 8.8 m) on to a rotating plate and the airflow velocity was sampled at multiple positions around the instrument. The measurements were obtained using a traversing system equipped with a “Cobra” multi hole pressure probe, that provides the three velocity components of the local flow. Different orientation angles of the gauge with respect to the incoming flow direction were tested. Based on the simulations and wind tunnel tests performed, the less impacting configuration of the instrument relative to the main wind direction is obtained. The information can be useful to design effective solutions to minimise the impact of wind and turbulence on the measurements (e.g. windshields) and to derive suitable correction curves to improve the measurement accuracy. This work is funded as part of the activities of the EURAMET – Normative project “INCIPIT – Calibration and Accuracy of Non-Catching Instruments to measure liquid/solid atmospheric precipitation”.</p>


2000 ◽  
Vol 122 (4) ◽  
pp. 196-202 ◽  
Author(s):  
J. Whale ◽  
C. J. Fisichella ◽  
M. S. Selig

In order to provide accurate blade element data for wind turbine design codes, measured three-dimensional (3D) field data must be corrected in terms of the (sectional) angle of attack. A 3D Lifting-Surface Inflow Correction Method (LSIM) has been developed with the aid of a vortex-panel code in order to calculate the relationship between measured local flow angle and angle of attack. The results show the advantages of using the 3D LSIM correction over 2D correction methods, particularly at the inboard sections of the blade where the local flow is affected by post-stall effects and the influence of the blade root. [S0199-6231(00)00604-3]


2016 ◽  
Vol 1 (2) ◽  
pp. 143-152 ◽  
Author(s):  
Giorgio Demurtas ◽  
Nick Gerardus Cornelis Janssen

Abstract. A spinner anemometer can be used to measure the yaw misalignment and flow inclination experienced by a wind turbine. Previous calibration methods used to calibrate a spinner anemometer for flow angle measurements were based on measurements of a spinner anemometer with default settings (arbitrary values, generally k1,d  =  1 and k2,d  =  1) and a reference yaw misalignment signal measured with a yaw position sensor. The yaw position sensor is normally present in wind turbines for control purposes; however, such a signal is not always available for a spinner anemometer calibration. Therefore, an additional yaw position sensor was installed prior to the spinner anemometer calibration. An innovative method to calibrate the spinner anemometer without a yaw positions sensor was then developed. It was noted that a non-calibrated spinner anemometer that overestimates (underestimates) the inflow angle will also overestimate (underestimate) the wind speed when there is a yaw misalignment. The new method leverages the non-linearity of the spinner anemometer algorithm to find the calibration factor Fα by an optimization process that minimizes the dependency of the wind speed on the yaw misalignment. The new calibration method was found to be rather robust, with Fα values within ±2.7 % of the mean value for four successive tests at the same rotor position.


Fluids ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 128
Author(s):  
Di Zhang ◽  
Daniel R. Cadel ◽  
Eric G. Paterson ◽  
K. Todd Lowe

A hybrid Reynolds-averaged Navier Stokes/large-eddy simulation (RANS/LES) turbulence model integrated with a transition formulation is developed and tested on a surrogate model problem through a joint experimental and computational fluid dynamic approach. The model problem consists of a circular cylinder for generating coherent unsteadiness and a downstream airfoil in the cylinder wake. The cylinder flow is subcritical, with a Reynolds number of 64,000 based upon the cylinder diameter. The quantitative dynamics of vortex shedding and Reynolds stresses in the cylinder near wake are well captured, owing to the turbulence-resolving large eddy simulation mode that was activated in the wake. The hybrid model switched between RANS and LES modes outside the boundary layers, as expected. According to the experimental and simulation results, the airfoil encountered local flow angle variations up to ±50°. Further analysis through a phase-averaging technique found phase lags in the airfoil boundary layer along the chordwise locations, and both the phase-averaged and mean velocity profiles collapsed into the Law-of-the-wall in the range of 0 < y + < 50 . The features of high blade-loading fluctuations due to unsteadiness and transitional boundary layers are of interest in the aerodynamic studies of full-scale wind turbine blades, making the current model problem a comprehensive benchmark case for future model development and validation.


Sign in / Sign up

Export Citation Format

Share Document