Ducted Wind Turbine Optimization

2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Ravon Venters ◽  
Brian T. Helenbrook ◽  
Kenneth D. Visser

This study presents a numerical optimization of a ducted wind turbine (DWT) to maximize power output. The cross section of the duct was an Eppler 423 airfoil, which is a cambered airfoil with a high lift coefficient (CL). The rotor was modeled as an actuator disk, and the Reynolds-averaged Navier–Stokes (RANS) k–ε model was used to simulate the flow. The optimization determined the optimal placement and angle for the duct relative to the rotor disk, as well as the optimal coefficient of thrust for the rotor. It was determined that the optimal coefficient of thrust is similar to an open rotor in spite of the fact that the local flow velocity is modified by the duct. The optimal angle of attack of the duct was much larger than the separation angle of attack of the airfoil in a freestream. Large angles of attack did not induce separation on the duct because the expansion caused by the rotor disk helped keep the flow attached. For the same rotor area, the power output of the largest DWT was 66% greater than an open rotor. For the same total cross-sectional area of the entire device, the DWT also outperformed an open rotor, exceeding Betz's limit by a small margin.

Author(s):  
Ravon Venters ◽  
Brian Helenbrook

The cross-sectional geometry of a diffuser-augmented wind turbine (DAWT) is often that of a cambered airfoil oriented at an angle of attack such that the lift coefficient of the airfoil is maximal. Beyond this angle separation occurs, and the performance decreases. Thus, predicting this transition is important for creating an optimally designed diffuser. The focus of this work is to validate two numerical methods for predicting the onset of separation for highly cambered airfoils. The numerical models investigated are a Reynolds-averaged-Navier-Stokes (RANS) k–ε model and XFOIL. The results were compared to each other and to experimental data. Overall the most accurate model was the k–ε model. Using this model, an optimization of a 2D DAWT was performed which determined the optimal placement of the diffuser. This optimization showed that the optimal angle of attack for the diffuser is much greater than what one would expect based on the maximum lift angle of an airfoil in a free-stream.


2015 ◽  
Vol 9 (1) ◽  
pp. 320-323
Author(s):  
Zhang Lijun ◽  
Liu Hua ◽  
Zhang Mingming ◽  
Hu Yi’e

Tip speed ratio is an important parameter of describing wind turbine performance. Based on vane airfoil profile, the relationship between vane lift coefficient, drag coefficient and angle of attack is calculated by means of Profili software. The corresponding stall angle is also obtained. The relationship between the position angle of vane and angle of attack at different tip speed ratios is drawn by Matlab software and the corresponding best tip speed ratio is determined rapidly. Based on it, the airfoil tangential force is also analyzed for different vane airfoil profiles in the condition of same Reynolds number.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 4012
Author(s):  
Wei Zhong ◽  
Wen Zhong Shen ◽  
Tong Guang Wang ◽  
Wei Jun Zhu

The angle of attack (AoA) is the key parameter when extracting the aerodynamic polar from the rotating blade sections of a wind turbine. However, the determination of AoA is not straightforward using computational fluid dynamics (CFD) or measurement. Since the incoming streamlines are bent because of the complex inductions of the rotor, discrepancies exist between various existing determination methods, especially in the tip region. In the present study, flow characteristics in the region near wind turbine blades are analyzed in detail using CFD results of flows past the NREL UAE Phase VI rotor. It is found that the local flow determining AOA changes rapidly in the vicinity of the blade. Based on this finding, the concepts of effective AoA as well as nominal AoA are introduced, leading to a new method of AOA determination. The new method has 5 steps: (1) Find the distributed vortices on the blade surface; (2) select two monitoring points per cross-section close to the aerodynamic center on both pressure and suction sides with an equal distance from the rotor plane; (3) subtract the blade self-induction from the velocity at each monitoring point; (4) average the velocity of the two monitoring points obtained in Step 3; (5) determine the AoA using the velocity obtained in Step 4. Since the monitoring points for the first time can be set very close to the aerodynamic center, leading to an excellent estimation of AoA. The aerodynamic polar extracted through determination of the effective AoA exhibits a consistent regularity for both the mid-board and tip sections, which has never been obtained by the existing determination methods.


2005 ◽  
Vol 29 (4) ◽  
pp. 331-339 ◽  
Author(s):  
Liu Hong ◽  
Huo Fupeng ◽  
Chen Zuoyi

Optimum aerodynamic performance of a wind turbine blade demands that the angle of attack of the relative wind on the blade remains at its optimum value. For turbines operating at constant speed, a change in wind speed causes the angle of attack to change immediately and the aerodynamic performance to decrease. Even with variable speed rotors, intrinsic time delays and inertia have similar effects. Improving the efficiency of wind turbines under variable operating conditions is one of the most important areas of research in wind power technology. This paper presents findings of an experimental study in which an oscillating air jet located at the leading edge of the suction surface of an aerofoil was used to improve the aerodynamic performance. The mean air-mass flowing through the jet during each sinusoidal period of oscillation equalled zero; i.e. the jet both blew and sucked. Experiments investigated the effects of the frequency, momentum and location of the jet stream, and the profile of the turbine blade. The study shows significant increase in the lift coefficient, especially in the stall region, under certain conditions. These findings may have important implications for wind turbine technology.


2017 ◽  
Author(s):  
Tyler Gallant ◽  
David A. Johnson

Abstract. The torque generated by a wind turbine blade is dependent on several parameters, one of which is the angle of attack. Several models for predicting the angle of attack in yawed conditions have been proposed in the literature, but there is a lack of experimental data to use for direct validation. To address this problem, experiments were conducted under controlled conditions at the University of Waterloo Wind Generation Research Facility using a 3.4 m diameter test turbine. A five-hole pressure probe was installed in a modular 3D printed blade and was used to measure the angle of attack, α, as a function of several parameters. Local flow angle measurements for all azimuthal angles were obtained at radial positions of r / R = 0.55 and 0.72 at tip speed ratios (λ) of 5.0, 3.6, and 3.1. The yaw offset of the turbine was varied from −15° to +15°. Span-wise flow angle measurements are presented for the r / R = 0.55 cases, and show the variation in radial flow direction throughout yawed rotation. Experimental results were compared directly to angle of attack values calculated using a model proposed by Morote in 2015. Modeled values were found to be in close agreement with the experimental results. The angle of attack was shown to vary cyclically in the yawed case while remaining mostly constant when aligned with the flow, as expected. These five-hole probe measurements were also used to characterise the upstream flow profile. Wind speeds determined using the five-hole probe measurements are presented and are in agreement with measurements obtained in the wind facility during testing. The quality of results indicates the potential of the developed instrument for wind turbine measurements.


2021 ◽  
Vol 6 ◽  
pp. 5
Author(s):  
Nazar Aldabash‎‎ ◽  
Andrew Wandel‎ ◽  
Abdul Salam Darwish‎ ◽  
Jayantha Epaarachchi‎

In this study, a numerical and experimental investigation for the flow separation over 170 mm chord, the NREL S822 aerofoil low Reynolds number wind turbine blade aerofoil section has been investigated at 15.8 m/s wind speed using suction and blowing techniques for the locations between 0.15 and 0.41 of the chord to improve aerodynamic characteristics of a wind turbine rotor blade. In a numerical study, two-dimensional aerofoil (i.e. NREL S822), using Shear Stress Transport (SST (γ − Reθ)) turbulence model, is presented. Careful selection for the number of mesh was considered through an iterative process to achieve the optimum mesh number resulted in optimum values for the ratio of lift to drag coefficients (CL/CD). Values of the lift coefficient, drag coefficient, and separation location were investigated at an angle of attack 18°. Flow separation is monitored and predicted within the numerical results at the tested angles, which has been compared with the experimental results and should a fair agreement. The results revealed that the aerodynamic characteristics of NERL S822 aerofoil would be improved using the suction technique more than the suction and blowing techniques and there is a delay of flow separation with the increase of blowing or suction volumetric flow rate. Using these two techniques and careful selection of the mesh numbers with the right angle of attack can improve the aerofoil characteristics and therefore lead to improve the turbine performance characteristics.


2019 ◽  
Vol 9 (3) ◽  
pp. 482 ◽  
Author(s):  
Guangxing Wu ◽  
Lei Zhang ◽  
Ke Yang

Aerodynamic measurement on horizontal axis wind turbines in the field is a challenging research topic and also an essential research method on the aerodynamic performance of blades in real atmospheric inflow conditions. However, the angle of attack is difficult to determine in the field due to the unsteadiness and unevenness of the inflow. To study the measuring and analyzing method of angle of attack in the field, a platform was developed based on a 100 kW wind turbine from the Institute of Engineering Thermophysics (IET) in China in this paper. Seven-hole probes were developed and installed at the leading edge to measure the inflow direction, static and total pressure at the near field. Two data reducing processes, sideslip angle correction, and induced velocity correction, were proposed to determine the effective angle of attack based on the inflow data measured by probes. The aerodynamic measurement platform was first validated by the comparison with wind tunnel results. Then some particular aerodynamic phenomenon in the field were discussed. As a result, the angle of attack varies quasi-periodically with the rotation of the rotor, which is caused by the yaw angle of the inflow. The variation of angle of attack induces dynamic response of a clockwise hysteresis loop in lift coefficient. The dynamic response is the main source of a dispersion of instantaneous lift coefficients with a standard deviation of 0.2.


2011 ◽  
Vol 35 (1) ◽  
pp. 101-117 ◽  
Author(s):  
Graeme I. Comyn ◽  
David S. Nobes ◽  
Brian A. Fleck

In preparation for a study on icing of wind turbine blades, we tested a horizontal axis micro wind turbine in a low speed wind tunnel. The ratio of wind turbine rotor area to wind tunnel cross-sectional area resulted in highly blocked experimental configuration. The turbine was instrumented to measure rotational speed of the rotor, axial thrust and power output. Performance characteristics were calculated and compared with the manufacturer’s published data. In addition, the near wake of the turbine was measured with a Kiel probe. One dimensional axial momentum theory, including a modification that includes channel walls, was applied to determine power extracted from the wind by the rotor. The results were compared to actual power output and show that though the assumptions of the model over-predict power by 50 % the basic trend is followed.


2021 ◽  
Author(s):  
Jaegwi Go

Abstract The angle of attack is highly sensitive to pitch point in the airfoil shape and the decline of pitch point value induces smaller angle of attack, which implies that airfoil profile possessing closer pitch point to the airfoil tip reacts more sensitively to upcoming wind. The method of conformal transformation functions is employed for airfoil profiles and airfoil surfaces are expressed with a trigonometric series form. Attack angle and ideal lift coefficient distributions are investigated for various airfoil profiles in wind turbine blade regarding conformal transformation and pitch point. The conformed angle function representing the surface angle of airfoil shape generate various attack angle distributions depending on the choice of surface angle function. Moreover, ideal attack angle and ideal lift coefficient are susceptible to the choice of airfoil profiles and uniform loading area. High ideal attack angle signifies high pliability to upcoming wind, and high ideal lift coefficient involves high possibility to generate larger electric energy. According to results obtained pitch point, airfoil shape, uniform loading area, and the conformed airfoil surface angle function are crucial factors in the determination of angle of attack.


Sign in / Sign up

Export Citation Format

Share Document