scholarly journals Exploitation of the far-offshore wind energy resource by fleets of energy ships. Part A. Energy ship design and performance

2020 ◽  
Author(s):  
Aurélien Babarit ◽  
Gaël Clodic ◽  
Simon Delvoye ◽  
Jean-Christophe Gilloteaux

Abstract. This paper deals with a new concept for the conversion of far-offshore wind energy into sustainable fuel. It relies on autonomously sailing energy ships and manned support tankers. Energy ships are wind-propelled. They generate electricity using water turbines attached underneath their hull. Since energy ships are not grid-connected, they include onboard power-to-X plants for storage of the produced energy. In the present work, the energy vector is methanol. The aim of the paper is to propose an energy ship design and to provide an estimate for its energy performance as function of the wind conditions. The energy performance assessment is based on a numerical model which is described in the paper. Results show that the wind energy-to-methanol (chemical energy) conversion efficiency is 24 % and that such energy ship deployed in the North Atlantic Ocean could produce approximately 5 GWh per annum of chemical energy (900 tonnes of methanol per annum).

2020 ◽  
Vol 5 (3) ◽  
pp. 839-853 ◽  
Author(s):  
Aurélien Babarit ◽  
Gaël Clodic ◽  
Simon Delvoye ◽  
Jean-Christophe Gilloteaux

Abstract. This paper deals with a new concept for the conversion of far-offshore wind energy into sustainable fuel. It relies on autonomously sailing energy ships and manned support tankers. Energy ships are wind-propelled. They generate electricity using water turbines attached underneath their hull. Since energy ships are not grid-connected, they include onboard power-to-X plants for storage of the produced energy. In the present work, the energy vector is methanol. The aim of the paper is to propose an energy ship design and to provide an estimate for its energy performance as function of the wind conditions. The energy performance assessment is based on a numerical model which is described in the paper. Results show that the wind energy-to-methanol (chemical energy) conversion efficiency is 24 % and that such an energy ship deployed in the North Atlantic Ocean could produce approximately 5 GWh per annum of chemical energy (900 t of methanol per annum).


2021 ◽  
Author(s):  
Aurélien Babarit ◽  
Félix Gorintin ◽  
Pierrick de Belizal ◽  
Antoine Neau ◽  
Giovanni Bordogna ◽  
...  

Abstract. This paper deals with a new concept for the conversion of far-offshore wind energy into sustainable fuel. It relies on autonomous sailing energy ships and manned support tankers. Energy ships are wind-propelled ships that generate electricity using water turbines attached underneath their hull. Since energy ships are not grid-connected, they include onboard power-to-X plants for storage of the produced energy. In the present work, the energy vector X is methanol. In the first part of this study (Babarit et al., 2020), an energy ship design has been proposed and its energy performance has been assessed. In this second part, the aim is to estimate the energy and economic performance of such system. In collaboration with ocean engineering, marine renewable energy and wind-assisted propulsion’s experts, the energy ship design of the first part has been revised and updated. Based on this new design, a complete FARWIND energy system is proposed, and its costs (CAPEX and OPEX) are estimated. Results of the models show (i) that this FARWIND system could produce approximately 70,000 tonnes of methanol per annum (approximately 400 GWh per annum of chemical energy) at a cost in the range 1.2 to 3.6 €/kg, (ii) that this cost may be comparable to that of methanol produced by offshore wind farms in the long term, and (iii) that FARWIND-produced methanol (and offshore wind farms-produced methanol) could compete with gasoline on the EU transportation fuel market in the long term.


2021 ◽  
Vol 6 (5) ◽  
pp. 1191-1204
Author(s):  
Aurélien Babarit ◽  
Félix Gorintin ◽  
Pierrick de Belizal ◽  
Antoine Neau ◽  
Giovanni Bordogna ◽  
...  

Abstract. This paper deals with a new concept for the conversion of far-offshore wind energy into sustainable fuel. It relies on autonomous sailing energy ships and manned support tankers. Energy ships are wind-propelled ships that generate electricity using water turbines attached underneath their hull. Since energy ships are not grid-connected, they include onboard power-to-X plants for storage of the produced energy. In the present work, the energy vector X is methanol. In the first part of this study, an energy ship design was proposed, and its energy performance was assessed. In this second part, the aim is to update the energy and economic performance of such a system based on design progression. In collaboration with ocean engineering, marine renewable energy and wind-assisted propulsion experts, the energy ship design of the first part has been revised. Based on this new design, a complete FARWIND energy system is proposed, and its costs (CAPEX and OPEX) are estimated. Results of the models show (i) that this FARWIND system could produce approximately 70 000 t of methanol per annum (approximately 400 GWh per annum of chemical energy) at a cost in the range EUR 1.2 to 3.6/kg, (ii) that this cost may be comparable to that of methanol produced by offshore wind farms in the long term and (iii) that FARWIND-produced methanol (and methanol produced by offshore wind farms) could compete with gasoline on the EU transportation fuel market in the long term.


Proceedings ◽  
2018 ◽  
Vol 2 (23) ◽  
pp. 1416
Author(s):  
Mario López ◽  
Noel Rodríguez-Fuertes ◽  
Rodrigo Carballo

This work assesses for the first time the offshore wind energy resource in Asturias, a region in the North of Spain. Numerical model and observational databases are used to characterize the gross wind energy resource at different points throughout the area of study. The production of several wind turbines is then forecasted on the basis of each technology power curve and the wind speed distributions. The results are mapped for a better interpretation and discussion.


2020 ◽  
Author(s):  
Aurélien Babarit ◽  
Simon Delvoye ◽  
Gaël Clodic ◽  
Jean-Christophe Gilloteaux

Abstract. This paper deals with a new concept for the conversion of far-offshore wind energy into sustainable fuel. It relies on autonomous sailing energy ships and manned support tankers. Energy ships are wind-propelled ships that generate electricity using water turbines attached underneath their hull. Since energy ships are not grid-connected, they include onboard power-to-X plants for storage of the produced energy. In the present work, the energy vector is methanol. In the first part of this study (Babarit et al., submitted), an energy ship design has been proposed and its energy performance has been assessed. In this second part, the aim is to estimate the energy and economic performance of the whole system. Thus, an energy and economic model has been developed which is presented in the paper. Results show that an initial FARWIND system could produce approximately 100,000 tonnes of methanol per annum (approximately 550 GWh per annum of chemical energy) at a cost in the range 150 to 325 €/MWh, and that FARWIND-produced methanol could compete with gasoline on the EU transportation fuel market in the long term.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4435
Author(s):  
Travis C. Douville ◽  
Dhruv Bhatnagar

The significant offshore wind energy potential of Oregon faces several challenges, including a power grid which was not developed for the purpose of transmitting energy from the ocean. The grid impacts of the energy resource are considered through the lenses of (i) resource complementarity with Variable Renewable Energy resources; (ii) correlations with load profiles from the four balancing authorities with territory in Oregon; and (iii) spatial value to regional and coastal grids as represented through a production cost model of the Western Interconnection. The capacity implications of the interactions between offshore wind and the historical east-to-west power flows of the region are discussed. The existing system is shown to accommodate more than two gigawatts of offshore wind interconnections with minimal curtailment. Through three gigawatts of interconnection, transmission flows indicate a reduction of coastal and statewide energy imports as well as minimal statewide energy exports.


Author(s):  
X. Costoya ◽  
M. deCastro ◽  
D. Carvalho ◽  
Z. Feng ◽  
M. Gómez-Gesteira

2021 ◽  
Vol 13 (5) ◽  
pp. 2862
Author(s):  
Amer Al-Hinai ◽  
Yassine Charabi ◽  
Seyed H. Aghay Kaboli

Despite the long shoreline of Oman, the wind energy industry is still confined to onshore due to the lack of knowledge about offshore wind potential. A spatial-temporal wind data analysis is performed in this research to find the locations in Oman’s territorial seas with the highest potential for offshore wind energy. Thus, wind data are statistically analyzed for assessing wind characteristics. Statistical analysis of wind data include the wind power density, and Weibull scale and shape factors. In addition, there is an estimation of the possible energy production and capacity factor by three commercial offshore wind turbines suitable for 80 up to a 110 m hub height. The findings show that offshore wind turbines can produce at least 1.34 times more energy than land-based and nearshore wind turbines. Additionally, offshore wind turbines generate more power in the Omani peak electricity demand during the summer. Thus, offshore wind turbines have great advantages over land-based wind turbines in Oman. Overall, this work provides guidance on the deployment and production of offshore wind energy in Oman. A thorough study using bankable wind data along with various logistical considerations would still be required to turn offshore wind potential into real wind farms in Oman.


Sign in / Sign up

Export Citation Format

Share Document