scholarly journals First confirmed report of powdery mildew (Erysiphe sp.) on Plumeria pudica in the United States

2017 ◽  
Vol 36 ◽  
pp. 3 ◽  
Author(s):  
S.N. Suarez ◽  
G. Sanahuja ◽  
P. Lopez ◽  
D.L. Caldwell
Plant Disease ◽  
2004 ◽  
Vol 88 (6) ◽  
pp. 681-681
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. L. Gullino

Aquilegia flabellata Sieb. and Zucc. (columbine) is a perennial garden species belonging to the family Ranunculaceae. During the summer of 2003, a severe outbreak of a previously unknown powdery mildew was observed in several gardens near Biella (northern Italy). Upper surfaces of leaves were covered with a white mycelium and conidia, and as the disease progressed infected leaves turned yellow and died. Foot cell was cylindric and appressorium lobed. Conidia were hyaline, ellipsoid, and measured 31.2 to 47.5 × 14.4 to 33 μm (average 38.6 × 21.6 μm). Fibrosin bodies were not present. Cleistothecia were globose, brown, had simple appendages, ranged from 82 to 127 (average 105) μm in diameter, and contained one to two asci. Ascocarp appendages measured five to eight times the ascocarp diameter. Asci were cylindrical (ovoidal) and measured 45.3 to 58.2 × 30.4 to 40.2 μm. Ascospores (three to four per ascus) were ellipsoid or cylindrical and measured 28.3 to 31.0 × 14.0 to 15.0 μ;m. On the basis of its morphology, the pathogen was identified as Erysiphe aquilegiae var. aquilegiae (1). Pathogenicity was confirmed by gently pressing diseased leaves onto leaves of five, healthy A. flabellata plants. Five noninoculated plants served as controls. Inoculated and noninoculated plants were maintained in a garden where temperatures ranged between 20 and 30°C. After 10 days, typical powdery mildew symptoms developed on inoculated plants. Noninoculated plants did not show symptoms. To our knowledge, this is the first report of the presence of powdery mildew on Aquilegia flabellata in Italy. E. communis (Wallr.) Link and E. polygoni DC. were reported on several species of Aquilegia in the United States (2), while E. aquilegiae var. aquilegiae was previously observed on A. flabellata in Japan and the former Union of Soviet Socialist Republics (3). Specimens of this disease are available at the DIVAPRA Collection at the University of Torino. References: (1) U. Braun. Nova Hedwigia, 89:700, 1987. (2) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St Paul, MN, 1989. (3) K. Hirata. Host Range and Geographical Distribution of the Powdery Mildews. Faculty of Agriculture, Niigata University, 1966.


Plant Disease ◽  
2016 ◽  
Vol 100 (6) ◽  
pp. 1212-1221 ◽  
Author(s):  
Sierra N. Wolfenbarger ◽  
Stephen T. Massie ◽  
Cynthia Ocamb ◽  
Emily B. Eck ◽  
Gary G. Grove ◽  
...  

Host resistance, both quantitative and qualitative, is the preferred long-term approach for disease management in many pathosystems, including powdery mildew of hop (Podosphaera macularis). In 2012, an epidemic of powdery mildew occurred in Washington and Idaho on previously resistant cultivars whose resistance was putatively based on the gene designated R6. In 2013, isolates capable of causing severe disease on cultivars with R6-based resistance were confirmed in Oregon and became widespread during 2014. Surveys of commercial hop yards during 2012 to 2014 documented that powdery mildew is now widespread on cultivars possessing R6 resistance in Washington and Oregon, and the incidence of disease is progressively increasing. Pathogenic fitness, race, and mating type of R6-virulent isolates were compared with isolates of P. macularis lacking R6 virulence. All isolates were positive for the mating type idiomorph MAT1-1 and were able to overcome resistance genes Rb, R3, and R5 but not R1 or R2. In addition, R6-virulent isolates were shown to infect differential cultivars reported to possess the R6 gene and also the R4 gene, although R4 has not yet been broadly deployed in the United States. R6-virulent isolates were not detected from the eastern United States during 2012 to 2015. In growth chamber studies, R6-virulent isolates of P. macularis had a significantly longer latent period and produced fewer lesions on plants with R6 as compared with plants lacking R6, indicating a fitness cost to the fungus. R6-virulent isolates also produced fewer conidia when compared with isolates lacking R6 virulence, independent of whether the isolates were grown on a plant with or without R6. Thus, it is possible that the fitness cost of R6 virulence occurs regardless of host genotype. In field studies, powdery mildew was suppressed by at least 50% on plants possessing R6 as compared with those without R6 when coinoculated with R6-virulent and avirulent isolates. R6 virulence in P. macularis appears to be race specific and, at this time, imposes a measurable fitness penalty on the fungus. Resistance genes R1 and R2 appear to remain effective against R6-virulent isolates of P. macularis in the U.S. Pacific Northwest.


Plant Disease ◽  
2018 ◽  
Vol 102 (8) ◽  
pp. 1664-1664 ◽  
Author(s):  
S. Moparthi ◽  
M. Bradshaw ◽  
K. Frost ◽  
P. B. Hamm ◽  
J. W. Buck

Plant Disease ◽  
2006 ◽  
Vol 90 (8) ◽  
pp. 1098-1101 ◽  
Author(s):  
Ainong Shi ◽  
Margaret T. Mmbaga

The fungus Erysiphe lagerstroemiae is commonly known as the powdery mildew pathogen in crape myrtle (Lagerstroemiae indica) in the United States, and Erysiphe australiana is the powdery mildew pathogen reported in Japan, China, and Australia. The teleomorph often used to identify powdery mildew fungi rarely develops in crape myrtle, and in our observations, ascocarps never formed. Our study showed that the crape myrtle pathogen overwintered as mycelia on dormant buds. The internal transcribed spacer (ITS) regions of rDNA and the intervening 5.8S rRNA gene were amplified using standard polymerase chain reaction (PCR) protocols and the universal primer pairs ITS1 and ITS4. PCR products were analyzed by electrophoresis in a 1.5% agarose gel and sequenced, and the ITS PCR product was 666 bp from ITS1/ITS4 and 704 bp from ITS1-F/ITS4. BLAST analysis of the sequence of the PCR products showed identical similarity with E. australiana reported in Japan, China, and Australia. Comparison of ITS sequences with information in the GenBank on other powdery mildew fungi showed a closest alignment (93% similarity) to Erysiphe juglandis that infects walnut. Specific primers for E. australiana were developed and evaluated for use as diagnostic tools. Out of 12 specific primer pairs evaluated, four primer pairs and four double primer pairs were highly specific to E. australiana and did not amplify Erysiphe pulchra of dogwood, Erysiphe syringae of common lilac, Erysiphe circinata of maple, or Phyllactinia guttata of oak. The E. australiana-specific primers amplified 16 samples of crape myrtle powdery mildew collected from diverse locations in mid-Tennessee. These results clearly showed that the crape myrtle powdery mildew in mid-Tennessee was caused by E. australiana. Specific primers reported in this article provide a diagnostic tool and may be used to confirm the identity of crape myrtle powdery mildew pathogen in other areas in the United States and wherever the disease occurs.


EDIS ◽  
2013 ◽  
Vol 2013 (9) ◽  
Author(s):  
Zhanao Deng

Gerbera daisy is one of the most popular flowers in the United States. Recently, interest has increased in growing gerberas in large containers for indoor or outdoor use. ‘Funtastic™ Tangerine Eye’ and ‘Funtastic™ Golden Eye’ have been selected and tested specifically for use in large containers. These cultivars produce large, powdery mildew-resistant plants and large, attractive flowers in orange-red or yellow-orange that complement the existing Funtastic™ series of gerbera cultivars. This 8-page fact sheet was written by Zhanao Deng, and published by the UF Department of Environmental Horticulture, September 2013. http://edis.ifas.ufl.edu/ep482


Plant Disease ◽  
2006 ◽  
Vol 90 (6) ◽  
pp. 830-830
Author(s):  
J. Weiland ◽  
G. Stanosz

Norway maple leaves bearing powdery mildew were collected from one location in the fall of 2003 and four locations (as much as 1.5 km apart) in the fall of 2005 in Buffalo, NY. No powdery mildew was observed on leaves collected from sugar maples (Acer saccharum) that were present in the vicinity of affected Norway maples at two locations. Trees were located along streets and in yards. Diseased leaves were present throughout tree crowns but lower leaves were more commonly affected. White mycelium was present in irregular, discrete, scattered spots only on the upper surface of leaves and on both sides of wings of samaras. Typically, <10% of the upper leaf area bore visible mycelium. Cleistothecia were present singly or in groups on the mycelium. Morphology of cleistothecia on leaves collected each year, including simple and bifid appendages with uncinate to circinate apices, was sufficient to identify the pathogen to the genus Sawadaea (1). Other characteristics were not sufficiently distinct to make an identification of S. bicornis or S. tulasnei (1), each a European species found on Acer spp. However, a sample from 2003 was supplied by the authors for use in a study of phylogeny of the genus (2) that served as a first report of the species in the United States. Analysis of nuclear rDNA ITS sequence of this specimen (GenBank Accession No. AB193390) placed the sample in a clade with S. tulasnei specimens from Europe. In the same study, powdery mildew samples from Acer spp. in Ohio and Montreal, Canada also were placed in this clade. Thus, occurrence of S. tulasnei in North America is confirmed. S. bicornis was recently identified (based on morphology) on Norway maple in the western United States (3). Specimens from Buffalo, NY have been deposited in the U.S. National Fungus Collections (BPI 871210). References: (1) U. Braun. The Powdery Mildews (Erysiphales) of Europe. Gustav Fischer Verlag, Jena-Stuttgart-New York, 1995. (2) S. Hirose et al. Mycol. Res. 109:912, 2005. (3) C. Nischwitz and G. Newcombe. Plant Dis. 87:451, 2003.


Plant Disease ◽  
2005 ◽  
Vol 89 (12) ◽  
pp. 1362-1362
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. L. Gullino

Potentilla fruticosa L. (bush cinquefoil), belonging to the family Rosaceae, is an ornamental plant used in parks and gardens. During the spring and summer of 2005, severe outbreaks of a previously unknown powdery mildew were observed in several private gardens located near Biella (northern Italy). The adaxial and abaxial surfaces of leaves as well as the stems were covered with white mycelium. Buds and flowers also were affected. As disease progressed, infected leaves turned yellow and dehisced. Conidia formed in chains and were hyaline, ovoid, and measured 24.0 to 36.0 × 15.8 to 24.0 μm (average 30.1 × 20.0 μm). Fibrosin bodies were present. Chasmothecia were numerous, sphaerical, amber colored, and diameters ranged from 84.0 to 98.4 μm (average 90.4 μm). Each chasmothecium contained one ascus with eight ascospores. Ascospores measured 26.5 to 27.2 × 13.2 to 15.6 μm (average 26.8 × 14.0 μm). On the basis of its morphology, the causal agent was determined to be Podosphaera aphanis (Wallr.) U. Braun & S. Takamatsu var. aphanis U. Braun (1). Pathogenicity was confirmed through inoculations by gently pressing diseased leaves onto leaves of healthy P. fruticosa plants. Three plants were inoculated. Three noninoculated plants served as a control. Plants were maintained at temperatures ranging from 12 to 23°C. Ten days after inoculation, typical symptoms of powdery mildew developed on inoculated plants. Noninoculated plants did not show symptoms. The pathogenicity test was carried out twice. To our knowledge, this is the first report of powdery mildew on P. fruticosa in Italy. Erysiphe polygoni D.C. and Sphaerotheca macularis (Wallr.:Fr.) Lind were observed in the United States on P. fruticosa (2), while in Japan, the presence of S. aphanis var aphanis was reported (3). Voucher specimens are available at the AGROINNOVA Collection, University of Torino. References: (1) U. Braun and S. Takamatsu. Schlechtendalia 4:1, 2000 (2) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St Paul, MN, 1989. (3) S. Tanda et al. J. Agric. Sci. 39:258, 1995.


Plant Disease ◽  
2013 ◽  
Vol 97 (6) ◽  
pp. 841-841
Author(s):  
H. B. Lee ◽  
H. W. Lee ◽  
H. Y. Mun

Platanus occidentalis L. (sycamore) is an important shade tree distributed throughout the Northern Hemisphere and in South Korea. It has been widely used as an ornamental tree, especially in urban regions and by roadsides. The average rate of roadside planting throughout South Korea covers about 5.7% (up to 38% in Seoul), equivalent to 0.36 million trees. In early July 2012, after a rainy spell in summer, an outbreak of powdery mildew on sycamore was first observed on roadside trees in Gwangju, a southern province of South Korea. A more extensive nationwide survey revealed no powdery mildew in northern or central regions of South Korea. The disease has spread rapidly within Gwangju, even though fungicide applications were carried out after the rainy spell. Major symptoms included white, superficial mycelia, grey to brown lesions on the surface of the leaves due to the presence of a hyperparasite (tentatively identified as Ampelomyces sp.), a slight chlorosis, and severe leaf distortion followed by defoliation. Conidiophores were produced singly, straight, and unbranched, with lengths of 35.2 to 315.2 μm (average 170.4 μm). Conidia were ellipsoid or doliiform, ranging in size from 34.9 to 47.4 μm (average 38.2 μm) long × 16.5 to 26.8 μm (average 23.9 μm) wide. Primary conidia had a truncate base and rounded apex; secondary conidia had both a truncate base and apex. The conidial outer surface had a reticulated wrinkling. Cleistothecia (i.e., sexual spore structures) were not found during the survey, which extended from July to October. These characteristics and the host species match those of Microsphaera platani (syn. Erysiphe platani), which was described on P. occidentalis in Washington State (2). Fungal rDNA was amplified using primers ITS1 and LR5F (4) for one sample (EML-PLA1, GenBank JX485651). BLASTn searches of GenBank revealed high sequence identity to E. platani (99.5% to JQ365943 and 99.3% to JQ365940). Recently, Liang et al. (3) reported the first occurrence of powdery mildew by E. platani on P. orientalis in China based only on its morphology. Thus, in this study, author could only use ITS sequence data from the United States and Europe to characterize the isolate. To date, nine records of powdery mildews of Platanus spp. have been reported worldwide: on P. hispanica from Brazil, Japan, Hungary, and Slovakia; P. orientalis from Israel; P. racemosa from the United States; P. × acerifolia from the United Kingdom and Germany; and Platanus sp. from Argentina and Australia (1). Interestingly, the hyperparasite, Ampelomyces sp., was found with E. platani, suggesting that there may be some level of biocontrol in nature. Pathogenicity was confirmed by gently pressing diseased leaves onto six leaves of healthy sycamore plants in the field in September. The treated leaves were sealed in sterilized vinyl pack to maintain humid condition for 2 days. Similar symptoms were observed on the inoculated leaves 10 days after inoculation. Koch's postulates were fulfilled by re-observing the fungal pathogen. To our knowledge, this is the first report of powdery mildew caused by E. platani on sycamore in South Korea. References: (1) D. F. Farr and A. Y. Rossman. Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA. http://nt.ars-grin.gov/fungaldatabases/ , 2012. (2) D. A. Glawe. Plant Health Progress, doi:10.1094/PHP-2003-0818-01-HN, 2003. (3) C. Liang et al. Plant Pathol. 57:375, 2008. (4) T. J White et al., pp. 315-322 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., ed. Academic Press, New York, 1990.


Plant Disease ◽  
1998 ◽  
Vol 82 (1) ◽  
pp. 128-128 ◽  
Author(s):  
S. T. Koike ◽  
G. S. Saenz

In December 1996 and January 1997, powdery mildew was observed on potted poinsettia (Euphorbia pulcherrima Willd. ex Klotzsch) plants in Monterey County, CA. Mycelia were observed on stems, petioles, mature and immature leaves, and bracts. Severely diseased leaves became twisted and bent and senesced prematurely. The white mycelia were conspicuous, epiphytic, and amphigenous; hyphae measured 4.6 to 6.9 μm in diameter. Growth initially was in patches but eventually became effused. Appressoria were slightly lobed to lobed and sometimes opposite. Conidiophore foot cells were cylindrical, sometimes bent at the base, and slightly flexuous to flexuous. Foot cells measured 30.0 to 46.2 μm × 5.8 to 6.9 μm and were followed by one to two shorter cells. Conidia were cylindrical to slightly doliform and measured 25.4 to 32.3 μm × 11.6 to 18.5 μm. The length-to-width ratios of conidia generally were greater than 2.0. Conidia were produced singly, placing the fungus in the Pseudoidium-type powdery mildew group. Conidia germinated at the ends, and no fibrosin bodies were observed. Cleistothecia were not found. The fungus was identified as an Oidium species. Pathogenicity was demonstrated by gently pressing infected leaves having abundant sporulation onto leaves of potted poinsettia plants (cvs. Freedom Red, Peter Star Marble, and Nutcracker White), incubating the plants in a moist chamber for 48 h, and then maintaining plants in a greenhouse. After 12 to 14 days, powdery mildew colonies developed on the inoculated plants, and the pathogen was morphologically identical to the original isolates. Uninoculated control plants did not develop powdery mildew. This is the first report of powdery mildew on poinsettia in California. This fungus appears similar to Microsphaera euphorbiae but has longer, slightly flexuous foot cells that do not match the description for M. euphorbiae (1,2). An alternative identification would be Erysiphe euphorbiae; however, there are no available mitosporic descriptions for morphological comparisons (1,2). In the United States, powdery mildew of poinsettia previously has been reported in various states in the Pacific Northwest, Midwest, and Northeast. References: (1) U. Braun. Beih. Nova Hedwigia 89:1, 1987. (2) D. F. Farr et al. 1989. Fungi on Plants and Plant Products in the United States. American Phytopathological Society, St. Paul, MN.


Plant Disease ◽  
2009 ◽  
Vol 93 (4) ◽  
pp. 427-427 ◽  
Author(s):  
A. J. Gevens ◽  
G. Maia ◽  
S. A. Jordan

Crotalaria juncea L. (Fabaceae), commonly known as sunn hemp, is a subtropical annual legume grown in the United States as a cover crop that improves soil quality, provides nitrogen, suppresses weeds and nematodes, and adds organic matter to soils. In Florida, sunn hemp is a warm- and short-season cover crop that is typically planted in June and cut and incorporated into soil in September. In 2008, powdery mildew was observed on sunn hemp in a research field in Hastings, FL. This disease is important because it has the potential to impact the health and quality of sunn hemp, and this particular powdery mildew can infect cucurbits that are grown in north Florida from late summer to fall. Fungal growth appeared as typical white, powdery mildew colonies initially seen on upper leaf surfaces, especially along the midvein of infected leaves, but moving to undersides as disease progressed; petioles and floral parts were disease free. As disease progressed, colonies enlarged and coalesced to cover the entire leaf surface; heavily infected leaves senesced and abscised. Infection was primarily seen on the lower, more mature leaves of plants and not on the top 0.6 m (2 feet) of the plant. Mycelia produced white accumulations of conidiophores and conidia. Hyphae were superficial with papillate appressoria and produced conidiophores with cylindrical foot cells that measured 48.5 × 10.0 μm (mean of 100 foot cell measurements) and short chains of conidia. Conidia were hyaline, short-cylindrical to ovoid, lacked fibrosin bodies, borne in chains, had sinuate edge lines with other immature conidia, and measured 22.5 to 40.0 (mean = 29.85 μm) × 12.5 to 20.0 μm (mean = 15.55 μm). The teleomorph was not observed. The nuclear rDNA internal transcribed spacer (ITS) regions were amplified by PCR, using universal primers ITS1 and ITS4, and sequenced (GenBank Accession No. FJ479803). On the basis of morphological characteristics of the asexual, imperfect state that are consistent with published reports of Golovinomyces cichoracearum (2) and ITS sequence data that indicated 100% homology with G. cichoracearum from Helianthus annus (GenBank Accession No. AB077679), this powdery mildew was identified as caused by G. cichoracearum of the classification Golovinomyces Clade III (3). Pathogenicity was confirmed by gently pressing disease leaves onto leaves of healthy C. juncea plants. Inoculated plants were placed into plastic bags containing moist paper towels to maintain high humidity. The temperature was maintained at 24°C, and after 2 days, powdery mildew colonies developed in a manner consistent with symptoms observed under field conditions. A powdery mildew on Crotalaria was previously identified as caused by Microsphaera diffusa Cooke & Peck (1). To our knowledge, this is the first report of G. cichoracearum causing powdery mildew on C. juncea. References: (1) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St. Paul, MN, 1989. (2) D. A. Glawe et al. Online publication. doi: 10.1094/PHP-2006-0405-01-BR. Plant Health Progress, 2006. (3) S. Takamatsu et al. Mycol. Res. 110:1093, 2006.


Sign in / Sign up

Export Citation Format

Share Document