scholarly journals Selection of Inductor and Snubber Capactor to Optimize the Size and Efficiency of DC-DC Switching Power Converter

2018 ◽  
Vol 7 (1) ◽  
pp. 49-52
Author(s):  
N. M. Mahesh Gowda ◽  
S. S. Parthasarathy

This paper presents a selection of inductor and snubber capacitor in non-isolated synchronous DC-DC switching power converter. The circuit is made to operate in Synchronous Discontinuous Conduction Mode (SDCM)/Forced Continuous Conduction Mode (FCCM) of operation for minimum inductor value, to reduce the size, weight and cost of the converter. The turn off loss of the switch induced by SDCM of operation is minimized by connecting snubber capacitor across the transistor switch. Before the switch is turned ON, snubber capacitor requires certain amount of energy must be stored in the inductor to discharge the capacitor energy [1]. The question is how much capacitor and inductor value is required. A series of MATLAB script are executed to find minimum inductor value for FCCM of operation and to select snubber capacitor for maximum efficiency. Complementary gate signals are used to control the ON and OFF of main and auxiliary switch. SDCM of operation due to complementary control gate signal scheme, minimum turn on loss of the transistor switch and low diode reverse recovery loss are achieved. Thus the Zero Voltage Resonant Transition (ZVRT) of transistor switch is realized, both turn on and turn off loss is minimized and also removes the parasitic ringing in inductor current.

Author(s):  
Toni Prasetya ◽  
F. Danang Wijaya ◽  
Eka Firmansyah

Enhancing the switching frequency can increase the power density of a fullbridge dc-dc converter. However, power loss in switches will increase due to the intersection of voltage and current during turn-on and turn-off transition process. The switching power loss can be reduced by making the condition of zero voltage switching (ZVS) which in this study is obtained by using the phase-shifted PWM method. Achieving this condition requires appropriate parameters such as deadtime, leakage inductance, and the primary current of transformer in sufficient value. In this study, ZVS is achieved when the transformer leakage inductance of 14.12 μH is added with external inductance of 24.29 μH which is installed in series with transformer and when the primary current of transformer is more than 1.289 A.


2016 ◽  
Vol 25 (10) ◽  
pp. 1650128 ◽  
Author(s):  
Sevilay Cetin

This study presents an improved zero voltage switching (ZVS) boost converter with an active snubber cell providing soft switched operation for all semiconductors. The active snubber cell reduces the reverse recovery loss of the boost diode and also provides the zero voltage transition (ZVT) Turn-on and ZVS Turn-off for the boost switch. The zero current switching (ZCS) Turn-on and ZVS Turn-off for the snubber switch is also achieved. All diodes in the converter can be operated with soft switching (SS). In the snubber cell, SS energy can be transfered effectively to the output by the use of a snubber inductor and a capacitor. This energy transfer allows the use of additional parallel connected capacitor to the boost switch to provide ZVS turning off. There is no additional voltage and current stress on the boost switch and boost diode. The voltage stress of the snubber switch is also limited by the output voltage and the current stress of the snubber switch is reduced by the energy transfer to the output. SS operating of the semiconductors is maintained at very wide load ranges. The operation of the proposed converter is presented with a detailed steady state analysis. The predicted theoretical analysis is validated by a prototype with 500[Formula: see text]W output power and 100[Formula: see text]kHz operating frequency. The measured maximum efficiency values are obtained as approximately 97% and 85.4% at full load and 10% load conditions, respectively.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2618 ◽  
Author(s):  
Chien-Chun Huang ◽  
Tsung-Lin Tsai ◽  
Yao-Ching Hsieh ◽  
Huang-Jen Chiu

This paper proposes a novel bilateral zero-voltage switching (ZVS) bidirectional converter with synchronous rectification. By controlling the direction and timing of excessive current injection, the main power switches can achieve bilateral ZVS under various loads and output voltages. Compared with the common soft-switching power converter with only zero-voltage turn-on, the proposed bilateral ZVS bidirectional converter can achieve both zero-voltage switching on and off in every switching cycle. This feature can alleviate the output switching noise due to the controlled rising and falling slope of the switch voltage. Furthermore, the voltage slopes almost remain unchanged over a wide range of output voltages and load levels. The most important feature of bilateral ZVS is to reduce the output switching noise. Experimental results based on a 1 kW prototype are presented to demonstrate the performance of the proposed converter. From experimental results on the proposed scheme, the switching noise reduction is about 75%.


Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 983
Author(s):  
Woo-Young Choi ◽  
Min-Kwon Yang

This paper suggests a soft-switching bidirectional three-level DC–DC converter with a simple auxiliary circuit. The proposed converter uses auxiliary LC resonant circuits so that the power switches operate under a soft-switching condition. The resonant operation of the LC circuits makes power switches turn on at zero voltage, eliminating the turn-on switching power losses. The proposed converter improves the power efficiency, not using complex power switching circuits, but using simple LC resonant circuits. The operation of the proposed converter is described according to its operation modes. Experimental results for a 1.0 kW prototype are discussed to verify its performance. The proposed converter achieved the power efficiencies of 97.7% in the step-up mode and 97.8% in the step-down mode, respectively, for the rated load condition.


2014 ◽  
Vol 998-999 ◽  
pp. 450-453
Author(s):  
Bao Wen Sun

Paper presents a practical circuit topology and analyzes the converter working process. The converter leading pipe is used MOSFET to achieve a zero voltage turn-on and turn-off, and lagging using is used IGBT to achieve a zero current turn-on and turn-off. After the topology circuit parameters selected by the relevant waveform acquisition, the converter design is verified correct. By running on the power supply operation, converter excellent performance meets the market requirements.


Sign in / Sign up

Export Citation Format

Share Document