scholarly journals Effect of plant growth regulators on biochemical compounds of tangerine (Citrus unshiu Marc.)

10.5219/1126 ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 443-448 ◽  
Author(s):  
Oksana Belous ◽  
Julia Abilphazova

We investigated the effect on tangerine of new generation plant growth regulators. The use of drugs in the period of fruit ripening has led to increased 2.0 – 3.7 times abscisic acid (AA) and 1.9 – 4.7% of Indole-acetic acid (IAA) acid in the leaves. Studies have shown that Indole-acetic acid and abscisic acid beginning of a sharp accumulation of their hormones coincides with action of stress factors and growth dormancy period. The use of the regulators had an impact not only on their content in leaves but also on fruit quality. For example, treatment Indole-acetic acid and Obstaktin led to an increase in the fruit of vitamin C. After treatments with plant growth regulators has been a significant decline in the total number of organic acids (up to 2.35% at the option of Melaphen and to 2.50% at Obstaktin, LSD (p ≤0.05) = 0.06). By reducing the content in the fruits of organic acids to all variants increased the sugar-acid index. After each spraying tangerine on the treatment options plant growth regulators has been a significant increase the dry matter. Thus, the positive effect of plant growth regulators on all the quality characteristics of tangerine was shown. In the summer period, the treatment by regulators may have a protective effect, increases the content in plants the content of Indole-acetic acid. The plant growth regulators of new generation have a positive effect on quality of dwarf tangerine. Given that the plants of tangerine in the subtropical zone of Russia each summer have to drought and are losing not only in yield, fruit quality too, new regulators may exert a protective effect, because increases the content in plants is Indole-acetic acid, which activates gene expression of drought resistance.

2020 ◽  
Vol 15 (1) ◽  
pp. 30-39
Author(s):  
Ahmad Ali Suliman ◽  
Alexandr Gennadevich Abramov ◽  
Anna Alekseevna Shalamova ◽  
Antar Mahmoud Badran

The study aimed to improve fruit set and plant performance to increase tomato productivity by studying the effect of plant growth regulators on tomato plants (Lycopersicon esculentum). A specific experiment has been carried out to study the effect of plant growth regulators Hemo bles (humic acid, 850g/kg) at applied doses (250, 500 and 700 ppm) and Magictone (naphthalene acetic acid and naphthalene acetamide, 5…12.5 g/kg) at applied doses (250, 500 and 700 ppm) on growth and physiological characteristics of tomato plants (Big Beef F1). The experimental design was a Complete Randomized Blocks Design. Both Hemo bles and Magictone were applied three times (spraying on plants at 30 days after planting (DAP), 60 DAP and 90 DAP). The obtained results showed that, applying Ener-850 humic acid caused the highest significant plant height (264.6 cm), number of leaves/plant (45), stem diameter (1.9 cm) and fruit weight (137 g) during the two seasons. In addition, applying Magictone resulted in the highest significant flower number (48.1), fruit number (35.1) and flower clusters number in the plant (13.6). Additionally, humic acid significantly increased dry weight (75.1 g) of arial parts with improving of tomato fruit quality via enhancing the concentrations of ascorbic acid, level of vitamin C and carotenoid content. The results were analyzed using one-way analysis of variance (ANOVA) followed by Tukey’s HSD test with α = 0.05 with the help of MINITAB (v. 19.0) program.


2011 ◽  
Vol 94 (3) ◽  
pp. 968-977 ◽  
Author(s):  
Dasharath P Oulkar ◽  
Kaushik Banerjee ◽  
Manoj S Ghaste ◽  
Sahadeo D Ramteke ◽  
Dattatraya G Naik ◽  
...  

Abstract A selective and rapid multiresidue analysis method is presented for simultaneous estimation of 12 plant growth regulators (PGRs), namely, auxins (indol-3-acetic acid, indol-3-butyric acid, and naphthyl acetic acid), cytokinins (kinetin, zeatin, and 6-benzyladenine), gibberellic acid (GA3), abscisic acid, and synthetic compounds, namely, forchlorfenuron, paclobutrazole, isoprothiolane, and 2,4-dichlorophenoxy acetic acid (2,4-D) in bud sprouts and grape berries at the development stages of 2–3 and 6–8 mm diameters, which are the critical phases when exogenous application of PGRs may be necessary to achieve desired grape quality and yield. The sample preparation method involved extraction of plant material with acidified methanol (50%) by homogenization for 2 min at 15 000 rpm. The pH of the extract was enhanced up to 6 by adding ammonium acetate, followed by homogenization and centrifugation. The supernatant extract was cleaned by SPE on an Oasis HLB cartridge (200 mg, 6 cc). The final extract was measured directly by LC/MS/MS with electrospray ionization in positive mode, except for 2,4-D, GA3, and abscisic acid extracts, which required analysis in negative mode. Quantification by multiple reaction monitoring (MRM) was supported with full-scan mass spectrometric confirmation using “information-dependent acquisition” triggered with MRM to “enhanced product ionization” mode of the hybrid quadrupole-ion trap mass analyzer. The LOQ of the test analytes varied between 1 and 10 ng/g with associated recoveries of 80–120% and precision RSD <25% (n = 8). Significant matrix-induced signal suppression was recorded when the responses for pre- and postextraction spikes of analytes were compared; this could be resolved by using matrix-matched calibration standards. The method could successfully be applied in analyzing incurred residue samples and would, therefore, be useful in precisely deciding the necessity and dose of exogenous applications of PGRs on the basis of measured endogenous levels.


Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2112 ◽  
Author(s):  
Mariella Bonello ◽  
Uroš Gašić ◽  
Živoslav Tešić ◽  
Everaldo Attard

The production of secondary metabolites in tissue culture has been considered as an alternative to the cultivation and harvesting of crops intended for this purpose. The present study was aimed at the growth of callus and production of polyphenolic compound of callus derived from a Maltese indigenous grapevine variety, Ġellewża. Callus was inoculated onto plant growth regulators-enriched Murashige Skoog media (MSm) to determine whether polyphenols are produced in vitro as well as to determine the best combination of plant growth regulators needed for the production of these metabolites. From results obtained, it was observed that the best callus production was obtained by auxin-enriched MSm. In fact, indole acetic acid and indole acetic acid /6-benzyl aminopurine enhanced biomass accumulation (3.04 g and 3.39 g) as opposed to the others (<1.97 g). On the other hand, parameters showing the presence of flavonoids (tonality, 3.80), particularly anthocyanins (24.09 mg/kg) and total polyphenols (1.42 mg/g), were optimum in the presence of cytokinins, particularly 6-benzyl aminopurine. Analysis for single polyphenols revealed a high amount a particular stilbene: polydatin (glucoside of resveratrol). Resveratrol and other typical polyphenols, found in mature berries, were also found in significant quantities, while the other polyphenolic compounds were found in minimal quantities. This is the first study to describe the production and composition of polyphenols in Ġellewża callus cultures. From the results obtained, it can be seen that this grape tissue is an excellent alternative for the production of polyphenols from the stilbene group, which can be upscaled and exploited commercially.


HortScience ◽  
2003 ◽  
Vol 38 (4) ◽  
pp. 599-600
Author(s):  
Vincent M. Russo

Exogenously applied plant growth regulators may affect development of onion, but little is know about how concentration or timing of application can affect bulb grade and quality. Two concentrations of the growth regulators abscisic acid, gibberellic acid, indole-acetic acid, jasmonic acid, kinetin, and maleic acid hydrazide, and water controls, were applied at the 7- and 20-leaf stages to the middle of the leaf whorl in greenhouse grown onion plants. Leaf and bulb weights were lighter, and bulb diameters were smaller, from plants treated with growth regulators applied at the 7-leaf stage than those from plants treated at the 20-leaf stage. Bulbs produced on plants treated with water were the same size, or larger, than those produced on plants treated with individual growth regulators.


2017 ◽  
Vol 52 (11) ◽  
pp. 1118-1122 ◽  
Author(s):  
Alberto Fontanella Brighenti ◽  
Douglas André Würz ◽  
Mateus da Silveira Pasa ◽  
Leo Rufato

Abstract: The objective of this work was to investigate the effect of plant growth regulators for enhancing fruit color of 'Gala Standard' apples (Malus domestica). The experiment was carried out in the 2015 and 2016 crop seasons. The treatments consisted of water, as a control; 300 mg L-1 ethephon, as a positive control; 400 mg L-1 prohydrojasmonate; and 400 mg L-1 abscisic acid. Flesh firmness, soluble solids content, fruit weight, and red color were assessed after harvest. Plant growth regulators enhanced red color of fruit and chlorophyll degradation. Prohydrojasmonate and abscisic acid did not reduce flesh firmness, in the 2016 season.


Plants ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 35 ◽  
Author(s):  
Mohammed Ibrahim ◽  
Manjree Agarwal ◽  
Jeong Oh Yang ◽  
Muslim Abdulhussein ◽  
Xin Du ◽  
...  

The study focused on the influence of the plant growth regulators (PGRs) benzyladenine (BA) and naphthalene acetic acid (NAA) on the production of volatile organic compounds (VOCs) from the flowers of two modern rose varieties, Hybrid Tea and Floribunda. Thirty-six plants of Hybrid Tea and Floribunda were tested. Benzyladenine and naphthalene acetic acid were applied at 0, 100 and 200 mg/L to both rose varieties. Gas chromatography, coupled with flame ionization detection and mass spectrometry, was used to analyze and identify the volatile organic compounds from the flowers. A three-phase fiber 50/30 µm divinylbenzene/carboxen/polydimethylsiloxane was used to capture VOCs, at 2, 4 and 8 weeks, and 4 weeks was selected as it had the highest peak area. In total, 81 and 76 VOCs were detected after treatment of both rose varieties with BA and NAA, respectively. In addition, 20 compounds, which had significant differences between different treatments, were identified from both rose varieties. The majority of VOCs were extracted after the application of 200 mg (BA and NAA) /L of formulation, and four important compounds, cis-muurola-4(141)5-diene, y-candinene, y-muurolene and prenyl acetate, increased significantly compared to the controls. These compounds are commercially important aroma chemicals. This study used the rapid and solvent-free SPME method to show that BA and NAA treatments can result in significant VOC production in the flowers of two rose varieties, enhancing the aromatic value of the flowers. This method has the potential to be applied to other valuable aromatic floricultural plant species.


2011 ◽  
Vol 94 (6) ◽  
pp. 1715-1721 ◽  
Author(s):  
Dasharath P Oulkar ◽  
Kaushik Banerjee ◽  
Sunil Kulkarni

Abstract A selective and sensitive LC-MS/MS method is presented for simultaneous determination of 12 plant growth regulators, viz., indol-3-acetic acid, indol-3-butyric acid, kinetin, zeatin, 6-benzyl aminopurine, gibberellic acid, abscisic acid, chlormequat chloride, forchlorfenuron, paclobutrazole, daminozide, and 2,4-dichlorophenoxy acetic acid, in bud sprouts and grape berries. The sample preparation method involved extraction of homogenized sample (5 g) with 40 mL methanol (80%), and final determination was by LC-MS/MS in the multiple reaction monitoring (MRM) mode with time segmentation for quantification supported by complementary analysis by quadrupole-time of flight (Q-TOF) MS with targeted high-resolution MS/MS scanning for confirmatory identification based on accurate mass measurements. The recovery of the test compounds ranged within 90–107% with precision RSD less than 5% (n = 6). The method could be successfully applied in analyzing incurred residue samples, and the strength of accurate mass analysis could be utilized in identifying the compounds in cases where the qualifier MRM ions were absent or at an S/N less than 3:1 due to low concentrations.


Sign in / Sign up

Export Citation Format

Share Document