Author(s):  
Anil Kakarla ◽  
Sanjeev Agarwal ◽  
Sanjay Kumar Madria

Information processing and collaborative computing using agents over a distributed network of heterogeneous platforms are important for many defense and civil applications. In this chapter, a mobile agent based collaborative and distributed computing framework for network centric information processing is presented using a military application. In this environment, the challenge is to continue processing efficiently while satisfying multiple constraints like computational cost, communication bandwidth, and energy in a distributed network. The authors use mobile agent technology for distributed computing to speed up data processing using the available systems resources in the network. The proposed framework provides a mechanism to bridge the gap between computation resources and dispersed data sources under variable bandwidth constraints. For every computation task raised in the network, a viable system that has resources and data to compute the task is identified and sent to the viable system for completion. Experimental evaluation under the real platform is reported. It shows that in spite of an increase of the communication load in comparison with other solutions the proposed framework leads to a decrease of the computation time.


Author(s):  
Lawan Ahmed Mohammed ◽  
Kashif Munir

The change in physical structures of computing facilities into small and portable devices, or even wearable computers, has enhanced ubiquitous information processing. The basic paradigm of such pervasive computing is the combination of strongly decentralized and distributed computing with the help of diversified devices allowing for spontaneous connectivity via the Internet. In general, pervasive computing strives to simplify day-to-day life by providing mobile users with the means to carry out personal and business tasks via mobile and portable devices. This chapter examines the security challenges that are barriers to mainstream pervasive computing and explains why traditional security mechanisms fail to meet the demands of these environments.


2010 ◽  
Vol 08 (01n02) ◽  
pp. 259-269
Author(s):  
ANNE BROADBENT ◽  
ALAIN TAPP

We present a brief survey of results where quantum information processing is useful for performing distributed computation tasks. We describe problems that are impossible to solve using classical resources but that become feasible with the help of quantum mechanics. We also give examples where the use of quantum information significantly reduces the need for communication. The main focus of the survey is on communication complexity but we also address other distributed tasks.


2016 ◽  
Vol 39 ◽  
Author(s):  
Giosuè Baggio ◽  
Carmelo M. Vicario

AbstractWe agree with Christiansen & Chater (C&C) that language processing and acquisition are tightly constrained by the limits of sensory and memory systems. However, the human brain supports a range of cognitive functions that mitigate the effects of information processing bottlenecks. The language system is partly organised around these moderating factors, not just around restrictions on storage and computation.


2004 ◽  
Vol 9 (1) ◽  
pp. 43-55 ◽  
Author(s):  
Patrizia Vermigli ◽  
Alessandro Toni

The present research analyzes the relationship between attachment styles at an adult age and field dependence in order to identify possible individual differences in information processing. The “Experience in Close Relationships” test of Brennan et al. was administered to a sample of 380 individuals (160 males, 220 females), while a subsample of 122 subjects was given the Embedded Figure Test to measure field dependence. Confirming the starting hypothesis, the results have shown that individuals with different attachment styles have a different way of perceiving the figure against the background. Ambivalent and avoidant individuals lie at the two extremes of the same dimension while secure individuals occupy the central part. Significant differences also emerged between males and females.


2006 ◽  
Vol 27 (2) ◽  
pp. 108-115 ◽  
Author(s):  
Ana-Maria Vranceanu ◽  
Linda C. Gallo ◽  
Laura M. Bogart

The present study investigated whether a social information processing bias contributes to the inverse association between trait hostility and perceived social support. A sample of 104 undergraduates (50 men) completed a measure of hostility and rated videotaped interactions in which a speaker disclosed a problem while a listener reacted ambiguously. Results showed that hostile persons rated listeners as less friendly and socially supportive across six conversations, although the nature of the hostility effect varied by sex, target rated, and manner in which support was assessed. Hostility and target interactively impacted ratings of support and affiliation only for men. At least in part, a social information processing bias could contribute to hostile persons' perceptions of their social networks.


Sign in / Sign up

Export Citation Format

Share Document