scholarly journals The Microstructure Evolution and Wear Resistance of Laser Cladding M2 High Speed Steel on Nodular Cast Iron

Author(s):  
N. J. Xu ◽  
C. S. Liu ◽  
Z. B. Wang ◽  
T. Sun
2013 ◽  
Vol 712-715 ◽  
pp. 611-614 ◽  
Author(s):  
Ni Jun Xu ◽  
Jian Bin Lv ◽  
Ting Sun ◽  
Chang Sheng Liu

As withstanding very high loads, thermal cycling leading to thermal fatigue, and severe environmental in the steel industry, rolls with long service life are specially required. High speed steel with high vanadium content is a newly-developed wear-resistance material that has been studied and used in some countries for making steel rolls. As a surface treatment technology, laser cladding can fabricate coating to improve the wear resistance of substrate. In this paper, the substrates for laser cladding were nodular cast iron rolls, Nd: YAG solid pulsed laser was used to explore the feasibility of preparation high vanadium high speed steel (HVHSS) coatings. The Nd: YAG laser cladding results that the coated layers combined metallurgically with the substrate with a lot of microcracks. The average microhardness up to 650 HV is more than 2 times as high as that of the substrate. After laser remelting, a fully dense and crack free HVHHS coating with an excellent metallurgical bonding was deposited. The presence of VC in the coating mainly improves the microhardness of coating up to about 650 HV.


2011 ◽  
Vol 418-420 ◽  
pp. 1527-1530
Author(s):  
Jian Bin Lv ◽  
Zheng Yi Wang ◽  
Xue Wei Wang ◽  
Chang Sheng Liu

Rolls in the steel industry withstand very high loads, thermal cycling leading to thermal fatigue, and severe environmental. How to improve the wear resistance and elongate the service life of rolls matters a lot in reducing the consumption of rolls. In recent years, because of its better red-hardness and wear property, high speed steel (HSS) was used to manufacture the new type composite rolls. As a surface treatment technology, laser cladding can fabricate coating to improve the wear resistance of substrate. In this paper, the substrates for laser cladding were nodular cast iron rolls, Nd:YAG solid pulsed laser and continuous wave CO2laser were both used to explore the feasibility of preparation HSS coatings. The Nd:YAG laser cladding results that the coated layers combined metallurgically with the substrate with a lot of microcracks. The average microhardness up to 600 HV is about 2 times as high as that of the substrate. The CO2laser cladding results that: fully dense and crack free clad surfaces of high speed steel with an excellent metallurgical bonding were deposited. The average microhardness up to 900 HV is about 3 times as high as that of the substrate. The high-temperature (500 °C) wear rate is 40% of nodular cast iron’s in 30 min.


JOM ◽  
2021 ◽  
Author(s):  
Deli Tian ◽  
Xue Liu ◽  
Liwei Hu ◽  
Fengsheng Qu ◽  
Jinfeng Li ◽  
...  

Alloy Digest ◽  
2010 ◽  
Vol 59 (9) ◽  

Abstract M2 EUR is the European version of the general purpose ASTM M2 high speed steel. This datasheet provides information on composition, physical properties, and elasticity as well as fracture toughness. It also includes information on wear resistance as well as heat treating and machining. Filing Code: TS-691. Producer or source: Latrobe Specialty Steel Company.


2013 ◽  
Vol 49 (5) ◽  
pp. 369-377 ◽  
Author(s):  
J. J. Candel ◽  
P. Franconetti ◽  
V. Amigó

2022 ◽  
Vol 327 ◽  
pp. 105-110
Author(s):  
Ting Sun ◽  
Yong Jin Wang ◽  
Ren Bo Song ◽  
Ya Zheng Liu ◽  
Jun Yanagimoto ◽  
...  

In this paper, the fundamental microstructure evolution of M2 high speed steel was investigated during semi-solid controlled cooling and conventional cooling, respectively. Semi-solid controlled cooling was conducted at 1260 °C with cooling rates from 0.1 to 10 °C/s, while conventional cooling was conducted at 1200 °C and 890 °C with different cooling rates. The continuous cooling transformation curves were plot according to the microstructure evolution. The results showed that microstructure transformation behavior of cooling structure in semi-solid temperature range was different from that of conventional process. For semi-solid specimen, the solid austenite dissolved more alloy elements, and the austenite stability was increased. The solid matrix was pearlite structure in the samples with cooling rate of 0.1 °C /s. When the cooling rate reached 1 °C/s, the granular pearlite disappeared and martensite lath was formed. The structure was relatively uniform, on which there were large carbide with regular shape. The solidified liquid phase showed a network shape surrounding the solid particles. The size of solid particles showed a decreasing trend with the increase of cooling rates. For conventional cooling process, the large eutectic M6C carbide and the small precipitated MC carbide could not be dissolved by austenitized at 890 °C. Increasing the austenitization temperature helped dissolving part of the carbides. The hardenability of M2 steel was high. The hardness has increased to a high level for both semi-solid and conventional specimens when cooling rate reached 1 °C/s. No obvious increase happened when cooling rate continued increasing.


Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 641 ◽  
Author(s):  
Shengwei Zhang ◽  
Min Lei ◽  
Mingpan Wan ◽  
Chaowen Huang

To improve the cutting performance, the red hardness and wear resistance of M2 high-speed steel, as well as expand the application field, in this work, a coating was fabricated via plasma cladding on M2 high-speed steel using Ni, Cr and Cu alloy elements as precursor materials. The distribution and composition of alloying elements, microhardness and wear resistance of the coating were studied. The results show that the NiCrCu cladding layer contains many types of carbides. The secondary hardening caused by the dispersion of carbides can significantly improve the hardness, red hardness and wear resistance of material. The hardness of cladding layer is above 950 HV, after holding at 600 °C for 4 h, the hardness is above 932 HV. The alloy elements are evenly distributed, but, due to the rapid solidification after the cladding, there are composition fluctuations in the longitudinal direction. The wear resistance of the cladding layer is excellent; the wear rate is reduced from 1.75 to 1.44 × 10−6 mm3 N−1 m−1 or less; and the wear mechanism is a combination of abrasive wear and adhesive wear.


2008 ◽  
Vol 2008 ◽  
pp. 1-8 ◽  
Author(s):  
Dong Yanchun ◽  
Yan Dianran ◽  
He Jining ◽  
Zhang Jianxin ◽  
Xiao Lisong ◽  
...  

Titanium nitride (TiN) coatings with nanostructure were prepared on the surface of 45 steel (Fe-0.45%C) via reactive plasma spraying (denoted as RPS) Ti powders using spraying gun with self-made reactive chamber. The microstructural characterization, phases constitute, grain size, microhardness, and wear resistance of TiN coatings were systematically investigated. The grain size was obtained through calculation using the Scherrer formula and observed by TEM. The results of X-ray diffraction and electron diffraction indicated that the TiN is main phase of the TiN coating. The forming mechanism of the nano-TiN was characterized by analyzing the SEM morphologies of surface of TiN coating and TiN drops sprayed on the surface of glass, and observing the temperature and velocity of plasma jet using Spray Watch. The tribological properties of the coating under nonlubricated condition were tested and compared with those of the AISI M2 high-speed steel andAl2O3coating. The results have shown that the RPS TiN coating presents better wear resistance than the M2 high-speed steel andAl2O3coating under nonlubricated condition. The microhardness of the cross-section and longitudinal section of the TiN coating was tested. The highest hardness of the cross-section of TiN coating is 1735.43HV100 g.


2021 ◽  
Author(s):  
Donggang Liu ◽  
Guoxing Liang ◽  
Xinhui Hao ◽  
Yonggui Huang ◽  
Guang Li ◽  
...  

Abstract Improving the wear resistance and corrosion resistance of high-speed steel (HSS), WC/diamond/Co-based gradient composite coatings were produced on HSS substrates by laser cladding with different compositions powder mixture (Co-Cr alloy powder, 80Co-Cr alloy powder+20WC, 53Co-Cr alloy powder+40WC+7diamond, wt.%). The macromorphology, microstructures and phase composition were characterized by optical microscope (OM), scanning electron microscopy (SEM) equipped with energy dispersion spectrometry (EDS), and X-ray diffraction (XRD) techniques. The microhardness, wear resistance and corrosion resistance of the gradient coatings were also investigated respectively. The results indicate that the prepared WC/diamond/Co-based gradient composite cladding layer has a fine morphology on the cross sections and a gradient transition of the grain size has been achieved. The microhardness result presents gradient distribution along the depth of the coating. The microhardness is strengthened due to the dispersions of M7C3 (M is Fe, Cr), Co3C, CrCo, Cr3C2, Fe3C in the composite coating, and the highest microhardness of 1342 HV0.2 can be detected in the cladding layer. The friction coefficient values of the coatings range from 0.27 to 0.40, which is much lower than that of the substrate (0.50-0.60). Furthermore, the wear loss of coatings decreases by more than 3 times comparing with that of the substrate (3.5 mg). The polarization resistance results show that the cladding layer has excellent corrosion resistance with polarization resistance can reach the value of 236488.1 Ω·cm2. The gradient transition of the mechanical properties and chemical metallurgical combination between particle (WC, diamond) and adhesive phase can be obtained in laser cladding, which improves the wear resistance and corrosion resistance of the HSS surface.


Sign in / Sign up

Export Citation Format

Share Document