scholarly journals Modeling Tools for the Foum El Oued Groundwater Aquifer under Climate Changes Context: Geodatabase and Hydrological Model

Author(s):  
Noura Ait Oubaha ◽  
Mohamed Faouzi ◽  
Abdelkader Larabi ◽  
Mohamed Jalal El Hamidi
Author(s):  
zhen wang ◽  
Meixue Yang ◽  
xuejia wang ◽  
lizhen cheng ◽  
guoning wan ◽  
...  

Climate changes may pose challenges to water management. Simulation and projection of climate-runoff processes through hydrological models are essential means to assess the impact of global climate change on runoff variations. This study focuses on the upper Taohe River Basin which is an important water sources for arid and semi-arid regions in Northwest China. In order to assess the impacts of environmental changes, outputs from a regional climate model and the SWAT hydrological model were used to analyze the future climate change scenarios to water resources quantitatively. The examined climate changes scenarios results showed that average annual temperature from 2020 to 2099 in this area exhibits a consistent warming trend with different warming rates, at rates of 0.10°C/10a, 0.20°C /10a and 0.54°C /10a under RCP2.6, RCP4.5 and RCP8.5(Representative Concentration Pathways, RCPs), The value of precipitation experiences different trends under different emission scenarios. Under the RCP2.6, average precipitation would decrease at a rate of 3.69 mm/10a, while under the RCP4.5 and RCP8.5, it would increase at rates of 4.97 mm/10a and 12.28 mm/10a, respectively. The calibration and validation results in three in-site observations (Luqu, Xiabagou and Minxian) in the upper Taohe River Basin showed that SWAT hydrological model is able to produce an acceptable simulation of runoff at monthly time-step. In response to future climate changes, projected runoff change would present different decreasing trends. Under RCP2.6, annual average runoff would experience a progress of fluctuating trend, with a rate of-0.6×108m3 by 5-year moving average method; Under the RCP4.5 and RCP8.5, annual average runoff would show steadily increasing trends, with rates of 0.23×108m3 and 0.16×108m3 by 5-year moving average method. The total runoff in the future would prone to drought and flood disasters. Overall, this research results would provide a scientific reference for reginal water resources management on the long term.


2020 ◽  
Author(s):  
Anahi Ocampo-Melgar ◽  
Pilar Barria ◽  
Cristian Chadwick

<p>Hydrological modeling tools are usually used to obtain broad scale understandings of ecological and hydrological interconnections in a basin. They have also been presented as useful to support collaborative decision processes by visually displaying hydrological systems connections, uncertainties and gaps, as well conflicting preferences over water management strategies. However, many challenges remain at capturing and communicating the complexity of couple human-hydrological systems. The Aculeo basin in Chile is an internationally publicized case due to the disappearance of a 12 km<sup>2</sup> lake that leaded to increasing conflicts over water scarcity and the cause of the catastrophe. A traditional hydrological model study and a separate collaborative agreement process were implemented in parallel to find answers and discuss solutions to the water scarcity crisis. The model initially designed to answer a single water balance question, was finally turned in a question-driven socio-hydrological modeling process used to explore a diversity of uncertainties emanating from the collaborative agreement process. Model development and some results of this integration are presented, displaying how science-policy process forces adjusting model structure, challenging official information and searching for alternatives sources and approaches to find answers. This research presents how a hydrological model can be used as a dynamic framework to address poor knowledge on the system behavior, disagreements on the water crisis causes and contradictions on the management options proposed. However, it also shows that participation can be an instance used by stakeholders to question and challenge the rigidity, scope and accuracy of the model information being presented. Therefore, flexible approaches and research agendas should support the exploration of this type of synergies towards more collaboration and production of useful and legitimate socio-hydrological models. </p>


2021 ◽  
Vol 14 (11) ◽  
pp. 6893-6917
Author(s):  
E. Andrés Quichimbo ◽  
Michael Bliss Singer ◽  
Katerina Michaelides ◽  
Daniel E. J. Hobley ◽  
Rafael Rosolem ◽  
...  

Abstract. Dryland regions are characterised by water scarcity and are facing major challenges under climate change. One difficulty is anticipating how rainfall will be partitioned into evaporative losses, groundwater, soil moisture, and runoff (the water balance) in the future, which has important implications for water resources and dryland ecosystems. However, in order to effectively estimate the water balance, hydrological models in drylands need to capture the key processes at the appropriate spatio-temporal scales. These include spatially restricted and temporally brief rainfall, high evaporation rates, transmission losses, and focused groundwater recharge. Lack of available input and evaluation data and the high computational costs of explicit representation of ephemeral surface–groundwater interactions restrict the usefulness of most hydrological models in these environments. Therefore, here we have developed a parsimonious distributed hydrological model for DRYland Partitioning (DRYP). The DRYP model incorporates the key processes of water partitioning in dryland regions with limited data requirements, and we tested it in the data-rich Walnut Gulch Experimental Watershed against measurements of streamflow, soil moisture, and evapotranspiration. Overall, DRYP showed skill in quantifying the main components of the dryland water balance including monthly observations of streamflow (Nash–Sutcliffe efficiency, NSE, ∼ 0.7), evapotranspiration (NSE > 0.6), and soil moisture (NSE ∼ 0.7). The model showed that evapotranspiration consumes > 90 % of the total precipitation input to the catchment and that < 1 % leaves the catchment as streamflow. Greater than 90 % of the overland flow generated in the catchment is lost through ephemeral channels as transmission losses. However, only ∼ 35 % of the total transmission losses percolate to the groundwater aquifer as focused groundwater recharge, whereas the rest is lost to the atmosphere as riparian evapotranspiration. Overall, DRYP is a modular, versatile, and parsimonious Python-based model which can be used to anticipate and plan for climatic and anthropogenic changes to water fluxes and storage in dryland regions.


2021 ◽  
Author(s):  
Edisson Andres Quichimbo ◽  
Michael Bliss Singer ◽  
Katerina Michaelides ◽  
Daniel E. J. Hobley ◽  
Rafael Rosolem ◽  
...  

Abstract. Dryland regions are characterized by water scarcity and are facing major challenges under climate change. One difficulty is anticipating how rainfall will be partitioned into evaporative losses, groundwater, soil moisture and runoff (the water balance) in the future, which has important implications for water resources and dryland ecosystems. However, in order to effectively estimate the water balance, hydrological models in drylands need to capture the key processes at the appropriate spatiotemporal scales including spatially restricted and temporally brief rainfall, high evaporation rates, transmission losses and focused groundwater recharge. Lack of available data and the high computational costs of explicit representation of ephemeral surface-groundwater interactions restrict the usefulness of most hydrological models in these environments. Therefore, here we have developed a parsimonious hydrological model (DRYP) that incorporates the key processes of water partitioning in dryland regions, and we tested it in the data-rich Walnut Gulch Experimental Watershed against measurements of streamflow, soil moisture and evapotranspiration. Overall, DRYP showed skill in quantifying the main components of the dryland water balance including monthly observations of streamflow (Nash efficiency (NSE) ~0.7), evapotranspiration (NSE > 0.6) and soil moisture (NSE ~0.7). The model showed that evapotranspiration consumes > 90 % of the total precipitation input to the catchment, and that < 1 % leaves the catchment as streamflow. Greater than 90 % of the overland flow generated in the catchment is lost through ephemeral channels as transmission losses. However, only ~35 % of the total transmission losses percolate to the groundwater aquifer as focused groundwater recharge, whereas the rest is lost to the atmosphere as riparian evapotranspiration. Overall, DRYP is a modular, versatile and parsimonious Python-based model which can be used to anticipate and plan for climatic and anthropogenic changes to water fluxes and storage in dryland regions


2012 ◽  
Vol 16 (2) ◽  
pp. 391-407 ◽  
Author(s):  
D. T. Mengistu ◽  
A. Sorteberg

Abstract. The hydrological model SWAT was run with daily station based precipitation and temperature data for the whole Eastern Nile basin including the three subbasins: the Abbay (Blue Nile), BaroAkobo and Tekeze. The daily and monthly streamflows were calibrated and validated at six outlets with station-based streamflow data in the three different subbasins. The model performed very well in simulating the monthly variability while the validation against daily data revealed a more diverse performance. The simulations indicated that around 60% of the average annual rainfalls of the subbasins were lost through evaporation while the estimated runoff coefficients were 0.24, 0.30 and 0.18 for Abbay, BaroAkobo and Tekeze subbasins, respectively. About half to two-thirds of the runoff could be attributed to surface runoff while the other contributions came from groundwater. Twenty hypothetical climate change scenarios (perturbed temperatures and precipitation) were conducted to test the sensitivity of SWAT simulated annual streamflow. The result revealed that the annual streamflow sensitivity to changes in precipitation and temperature differed among the basins and the dependence of the response on the strength of the changes was not linear. On average the annual streamflow responses to a change in precipitation with no temperature change were 19%, 17%, and 26% per 10% change in precipitation while the average annual streamflow responses to a change in temperature and no precipitation change were −4.4% K−1, −6.4% K−1, and −1.3% K−1 for Abbay, BaroAkobo and Tekeze river basins, respectively. 47 temperature and precipitation scenarios from 19 AOGCMs participating inCMIP3 were used to estimate future changes in streamflow due to climate changes. The climate models disagreed on both the strength and the direction of future precipitation changes. Thus, no clear conclusions could be made about future changes in the Eastern Nile streamflow. However, such types of assessment are important as they emphasise the need to use several an ensemble of AOGCMs as the results strongly dependent on the choice of climate models.


2021 ◽  
Author(s):  
Pierre-André Garambois ◽  
Abubakar Haruna ◽  
Hélène Roux ◽  
Pierre Javelle ◽  
Maxime Jay-Allemand

&lt;p&gt;Faced with the major challenges of floods and droughts forecasting, especially with the ongoing climate change and potential intensification of the hydrological cycle, advanced modeling tools are needed to perform effective predictions. Nevertheless, hydrological models, regardless of their complexity, encounter difficulties in accurately and reliably predicting quantities of interest such as river discharge or soil saturation dynamics and its spatial variability. Because of physical processes complexity and their limited observability, of the absence of an easily exploitable &quot;first-principle&quot;, hydrological modeling remains a difficult task involving emprism and the internal fluxes are generally tinged with large uncertainties. Moreover, multiple model and parameter combinations can lead to comparable performances in discharge simulation at locations where models are evaluated (unicity problem, so called equifinality in hydrology).&lt;/p&gt;&lt;p&gt;This contribution investigates flash flood modeling with models of different complexities: lumped GR4H (Perrin et al. 2003, Mathevet 2005) or distributed&amp;#160; SMASH (Jay-Allemand et al. 2020) conceptual models, process oriented distributed MARINE model (Roux et al. 2011). Considering two flash flood prone catchments (the Gardon at Anduze and the Ard&amp;#232;che at Vog&amp;#252;&amp;#233;, France) a methodology consisting in model global sensitivity analysis, calibration and hydrological signatures analysis is used. Model robustness and accuracy is analyzed in the light of model response surfaces, parameter sensitivity rankings and functionning points found with the different models and global calibration algorithms. Next, event performances and flow signatures are analyzed for contrasted events, but also simulated soil moisture evolutions (or equivalently available &amp;#8220;soil&amp;#8221; storage) compared to root zone soil moisture from the operational SIM hydro-meteorological model (Habets et al. 2008). This analysis is aimed at understanding how each model simulates the catchment behaviour: what are the differences between the simulated dynamics and how this understanding can be used to improve the relevance of the models. Finally, this study paves the way for extended model hypothesis testing and intercomparison in the light of multi-sourced signatures, for future improvements of vertical and lateral flow components of the SMASH* platform along with its variational calibration and assimilation algorithm.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;References:&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;&amp;#8226; Habets F., A. Boone, J.L Champeaux, et al. (2008)) : The SAFRAN-ISBA-MODCOU hydrometeorological model applied over France, &lt;em&gt;Journal of Geophysical Research&lt;/em&gt; 113, D06113 (2008) 18&lt;/p&gt;&lt;p&gt;&amp;#8226; Jay-Allemand M., P. Javelle, I. Gejadze, et al., On the potential of variational calibration for a fully distributed hydrological model: application on a mediterranean catchment. &lt;em&gt;HESS&lt;/em&gt;, pages 1&amp;#8211;24, 2019&lt;/p&gt;&lt;p&gt;&amp;#8226; Mathevet, T., 2005. Which lumped rainfall-runoff models for the hourly time-step? Empirical development and comparison of models on a large sample of catchments. &lt;em&gt;PhD Thesis.&lt;/em&gt; ENGREF, Cemagref (Irstea), Paris, France, pp. 463.&lt;/p&gt;&lt;p&gt;&amp;#8226; Roux H., D. Labat , P.-A. Garambois, M.-M. Maubourguet, J. Chorda, D. Dartus, A physically-based parsimonious hydrological model for flash floods in mediterranean catchments. NHESS, 11(9):2567&amp;#8211;2582, 2011.&lt;/p&gt;&lt;p&gt;&amp;#8226; Perrin C., C. Michel, V. Andr&amp;#233;assian, Improvement of a parsimonious model for streamflow simulation. &lt;em&gt;Journal of hydrology&lt;/em&gt;, 279(1-4):275&amp;#8211;289, 2003&lt;/p&gt;&lt;p&gt;*SMASH : &lt;em&gt;Spatially-distributed Modelling and ASsimilation for Hydrology&lt;/em&gt;, platform developped by INRAE-Hydris corp., operationally applied&amp;#160; in the french flashflood forecast system&lt;em&gt; VigicruesFlash&lt;/em&gt; - see presentation by J. Demargne et al.).&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1560
Author(s):  
Ke Wen ◽  
Bing Gao ◽  
Mingliang Li

The Amur River is one of the top ten longest rivers in the world, and its hydrological response to future climate change has been rarely investigated. In this study, the outputs of four GCMs in the Coupled Model Intercomparison Project Phase 6 (CMIP6) were corrected and downscaled to drive a distributed hydrological model. Then, the spatial variations of runoff changes under the future climate conditions in the Amur River Basin were quantified. The results suggest that runoffs will tend to increase in the future period (2021–2070) compared with the baseline period (1961–2010), particularly in August and September. Differences were also found among different GCMs and scenarios. The ensemble mean of the GCMs suggests that the basin-averaged annual precipitation will increase by 14.6% and 15.2% under the SSP2-4.5 and SSP5-8.5 scenarios, respectively. The increase in the annual runoff under the SSP2-4.5 scenario (22.5%) is projected to be larger than that under the SSP5-8.5 scenario (19.2%) at the lower reach of the main channel. Future climate changes also tend to enhance the flood peak and flood volume. The findings of this study bring new understandings of the hydrological response to future climate changes and are helpful for water resource management in Eurasia.


Sign in / Sign up

Export Citation Format

Share Document