Rubber Heat Engines, Analyses and Theory

1979 ◽  
Vol 52 (1) ◽  
pp. 159-172 ◽  
Author(s):  
R. J. Farris

Abstract It has long been known that elastomeric solids could be used as the working “fluid” in engines designed to convert heat into mechanical work. In the past rubber heat engine cycles were not given serious consideration since energy alternatives were not in demand and the majority of the scientific community is unaware of their gas-like thermodynamic behavior. Consequently, past work has dealt with the subject primarily as a novelty or as a demonstrative proof of thermodynamic behavior. This paper provides an idealized mechanical and thermodynamic analysis of the rubber cycle and compares it to an equivalent cycle wherein a gas is the working fluid. Experimental data on a small rubber fiber engine are included which confirms the high power potential of these engines when they are designed using modern elastomeric fibers. These materials have remarkable properties and can respond rapidly to cyclic thermal disturbances. Power densities of roughly one watt/g of rubber have been attained using only a 30°C difference between the heat source and heat sink. Engine speeds well over 1000 rpm have also been attained when atmospheric pressure steam was used as the heat source. The analyses demonstrate that elastomers are ideally suited for energy conversion when only small temperature differences are available.

Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 860
Author(s):  
Ivan R. Kennedy ◽  
Migdat Hodzic

Despite the remarkable success of Carnot’s heat engine cycle in founding the discipline of thermodynamics two centuries ago, false viewpoints of his use of the caloric theory in the cycle linger, limiting his legacy. An action revision of the Carnot cycle can correct this, showing that the heat flow powering external mechanical work is compensated internally with configurational changes in the thermodynamic or Gibbs potential of the working fluid, differing in each stage of the cycle quantified by Carnot as caloric. Action (@) is a property of state having the same physical dimensions as angular momentum (mrv = mr2ω). However, this property is scalar rather than vectorial, including a dimensionless phase angle (@ = mr2ωδφ). We have recently confirmed with atmospheric gases that their entropy is a logarithmic function of the relative vibrational, rotational, and translational action ratios with Planck’s quantum of action ħ. The Carnot principle shows that the maximum rate of work (puissance motrice) possible from the reversible cycle is controlled by the difference in temperature of the hot source and the cold sink: the colder the better. This temperature difference between the source and the sink also controls the isothermal variations of the Gibbs potential of the working fluid, which Carnot identified as reversible temperature-dependent but unequal caloric exchanges. Importantly, the engine’s inertia ensures that heat from work performed adiabatically in the expansion phase is all restored to the working fluid during the adiabatic recompression, less the net work performed. This allows both the energy and the thermodynamic potential to return to the same values at the beginning of each cycle, which is a point strongly emphasized by Carnot. Our action revision equates Carnot’s calorique, or the non-sensible heat later described by Clausius as ‘work-heat’, exclusively to negative Gibbs energy (−G) or quantum field energy. This action field complements the sensible energy or vis-viva heat as molecular kinetic motion, and its recognition should have significance for designing more efficient heat engines or better understanding of the heat engine powering the Earth’s climates.


Author(s):  
W. John Dartnall ◽  
John Reizes

In a recently developed simple particle mechanics model, in which a single particle represents the working fluid, (gas) in a heat engine, (exemplified by a piston engine) a new approach was outlined for the teaching of concepts to thermodynamic students. By mechanics reasoning, a model was developed that demonstrates the connection between the Carnot efficiency limitation of heat engines, and the Kelvin-Planck statement of Second Law, requiring only the truth of the Clausius statement. In a second paper the model was extended to introduce entropy. The particle’s entropy was defined as a function of its kinetic energy, and the space that it occupies, that is analogous to that normally found in classical macroscopic analyses. In this paper, questions are raised and addressed: How should temperature and entropy be perceived and defined? Should temperature be proportional to average (molecular) translational kinetic energy and should entropy be dimensionless?


Author(s):  
Houcheng Zhang ◽  
Lanmei Wu ◽  
Guoxing Lin

A class of solar-driven heat engines is modeled as a combined system consisting of a solar collector and a unified heat engine, in which muti-irreversibilities including not only the finite rate heat transfer and the internal irreversibility, but also radiation-convection heat loss from the solar collector to the ambience are taken into account. The maximum overall efficiency of the system, the optimal operating temperature of the solar collector, the optimal temperatures of the working fluid and the optimal ratio of heat transfer areas are calculated by using numerical calculation method. The influences of radiation-convection heat loss of the collector and internal irreversibility on the cyclic performances of the solar-driven heat engine system are revealed. The results obtained in the present paper are more general than those in literature and the performance characteristics of several solar-driven heat engines such as Carnot, Brayton, Braysson and so on can be directly derived from them.


Author(s):  
Muhammad I. Rashad ◽  
Hend A. Faiad ◽  
Mahmoud Elzouka

This paper presents the operating principle of a novel solar rotary crank-less heat engine. The proposed engine concept uses air as working fluid. The reciprocating motion is converted to a rotary motion by the mean of unbalanced mass and Coriolis effect, instead of a crank shaft. This facilitates the engine scaling and provides several degrees of freedom in terms of structure design and configuration. Unlike classical heat engines (i.e. Stirling), the proposed engine can be fixed to the ground which significantly reduce the generation unit cost. Firstly, the engine’s configuration is illustrated. Then, order analysis for the engine is carried out. The combined dynamics and thermal model is developed using ordinary differential equations which are then numerically solved by Simulink™. The resulting engine thermodynamics cycle is described. It incorporates the common thermodynamics processes (isobaric, isothermal, isochoric processes). Finally, the system behavior and performance are analyzed along with studying the effect of various design parameters on operating conditions such as engine speed, output power and efficiency.


Author(s):  
Yiding Cao

This paper introduces a new heat engine using a gas, such as air or nitrogen, as the working fluid that extracts thermal energy from a heat source as the energy input. The heat engine is to mimic the performance of an air-standard Otto cycle. This is achieved by drastically increasing the time duration of heat acquisition from the heat source in conjunction with the timing of the heat acquisition and a large heat transfer surface area. Performance simulations show that the new heat engine can potentially attain a thermal efficiency above 50% and a power output above 100 kW under open-cycle operation. Additionally, it could drastically reduce engine costs and operate in open cycles, effectively removing the difficulties of dry cooling requirement. The new heat engine may find extensive applications in renewable energy industries, such as concentrating solar power and geothermal energy power. Furthermore, the heat engine may be employed to recover energy from exhaust streams of internal combustion engines, gas turbine engines, and various industrial processes. It may also work as a thermal-to-mechanical conversion system in a nuclear power plant, and function as an external combustion engine in which the heat source is the combustion gas from an external combustion chamber.


Author(s):  
W. John Dartnall ◽  
John Reizes

In a recently developed simple particle mechanics model in which a single particle represents the working fluid (gas) in a heat engine (exemplified by a piston engine) a new approach was outlined for the teaching of concepts to thermodynamic students. By mechanics reasoning a model was developed that demonstrates the connection between the Carnot efficiency limitation of heat engines and the Kelvin-Planck statement of Second Law requiring only the truth of the Clausius statement. In this paper the model is extended to introduce entropy. Here the particle's entropy is defined as a function of its kinetic energy and the space that it occupies that is analogous to that normally found in classical macroscopic analyses.


Entropy ◽  
2020 ◽  
Vol 22 (11) ◽  
pp. 1323
Author(s):  
Julian Gonzalez-Ayala ◽  
José Miguel Mateos Roco ◽  
Alejandro Medina ◽  
Antonio Calvo Hernández

The stability of endoreversible heat engines has been extensively studied in the literature. In this paper, an alternative dynamic equations system was obtained by using restitution forces that bring the system back to the stationary state. The departing point is the assumption that the system has a stationary fixed point, along with a Taylor expansion in the first order of the input/output heat fluxes, without further specifications regarding the properties of the working fluid or the heat device specifications. Specific cases of the Newton and the phenomenological heat transfer laws in a Carnot-like heat engine model were analyzed. It was shown that the evolution of the trajectories toward the stationary state have relevant consequences on the performance of the system. A major role was played by the symmetries/asymmetries of the conductance ratio σhc of the heat transfer law associated with the input/output heat exchanges. Accordingly, three main behaviors were observed: (1) For small σhc values, the thermodynamic trajectories evolved near the endoreversible limit, improving the efficiency and power output values with a decrease in entropy generation; (2) for large σhc values, the thermodynamic trajectories evolved either near the Pareto front or near the endoreversible limit, and in both cases, they improved the efficiency and power values with a decrease in entropy generation; (3) for the symmetric case (σhc=1), the trajectories evolved either with increasing entropy generation tending toward the Pareto front or with a decrease in entropy generation tending toward the endoreversible limit. Moreover, it was shown that the total entropy generation can define a time scale for both the operation cycle time and the relaxation characteristic time.


2010 ◽  
Vol 14 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Jun Li ◽  
Lingen Chen ◽  
Fengrui Sun

Optimal temperature profile for maximum work output of multistage continuous Carnot heat engine system with two reservoirs of finite thermal capacity is determined. The heat transfer between heat source and the working fluid obeys radiation law and the heat transfer between heat sink and the working fluid obeys linear law. The solution is obtained by using optimal control theory and pseudo-Newtonian heat transfer model. It is shown that the temperature of driven fluid monotonically decreases with respect to flow velocity and process duration. The maximum work is obtained. The obtained results are compared with those obtained with infinite low temperature heat sink.


Inventions ◽  
2018 ◽  
Vol 3 (4) ◽  
pp. 79
Author(s):  
Kamel Aouane ◽  
Olivier Sandre ◽  
Ian Ford ◽  
Tim Elson ◽  
Chris Nightingale

Several studies have involved a combination of heat and gravitational energy exchanges to create novel heat engines. A common theoretical framework is developed here to describe thermogravitational cycles which have the same efficiencies as the Carnot, Rankine, or Brayton cycles. Considering a working fluid enclosed in a balloon inside a column filled with a transporting fluid, a cycle is composed of four steps. Starting from the top of the column, the balloon goes down by gravity, receives heat from a hot source at the bottom, then rises and delivers heat to a cold source at the top. Unlike classic power cycles which need external work to operate the compressor, thermogravitational cycles can operate as a “pure power cycle” where no external work is needed to drive the cycle. To illustrate this concept, the prototype of a thermogravitational electrical generator is presented. It uses a hot source of average temperature near 57 °C and relies on the gravitational energy exchanges of an organic fluorinated fluid inside a balloon attached to a magnetic marble to produce an electromotive force of 50 mV peak to peak by the use of a linear alternator. This heat engine is well suited to be operated using renewable energy sources such as geothermal gradients or focused sunlight.


Author(s):  
S. T. Robinson

During the past few months there has been a renewed expression of interest in the high-temperature gas-cycle reactor coupled with a closed-cycle gas turbine in a single loop as a means of utilizing the energy available from nuclear fission. At present the procurement of two closed-cycle gas-turbine plants is planned in this country, both of which are suitable for use with a gas-cycle nuclear reactor as a heat source. These plants differ widely in output, purpose and the nature of the working fluid. One of the questions repeatedly raised during their design was the effect of the nature and characteristics of the working fluid on the design of the nonnuclear components. This pointed to the desirability of a specific study along these lines, which study was conducted by the author’s firm and is partially reported herein.


Sign in / Sign up

Export Citation Format

Share Document