Preparation of Butadiene

1928 ◽  
Vol 1 (2) ◽  
pp. 208-210
Author(s):  
Stanley Francis Birch

Abstract OF THE numerous methods available for the preparation of butadiene in the laboratory, those described by Thiele and by Ostromuislenskii are probably the most convenient. Both, however, suffer from the disadvantages which usually characterize operations at comparatively high temperatures; the exact conditions are difficult to find, the process is long and tedious, and finally involves the separation of the required material from a complex mixture. It has long been known that butadiene occurs in the various products obtained when oils are heated to a high temperature. Caventou first isolated butadiene in the form of its tetrabromide from illuminating gas, and Armstrong and Miller definitely established the presence of butadiene in the liquid obtained by compressing oil gas. The work of numerous later investigators has confirmed their results and has shown that the more drastic the heat treatment to which the oil is submitted the greater is the tendency for butadiene to be formed. For this reason vapor-phase cracking of petroleum, which is carried out at a much higher temperature than liquid-phase cracking, yields products specially rich in butadiene.

2012 ◽  
Vol 532-533 ◽  
pp. 234-237
Author(s):  
Wei Lai Chen ◽  
Ding Hong Yi ◽  
Jian Fu Zhang

The purpose of this paper is to study the effect of high temperature in injection molding process on mechanical properties of the warp-knitted and nonwoven composite fabrics (WNC)used in car interior. Tensile, tearing and peeling properties of WNC fabrics were tested after heat treatment under120, 140,160,180°C respectively. It was found that, after 140°C heat treatment, the breaking and tearing value of these WNC fabrics are lower than others. The results of this study show that this phenomenon is due to the material properties of fabrics. These high temperatures have no much effect on peeling properties of these WNC fabrics. It is concluded that in order to preserve the mechanical properties of these WNC fabrics, the temperature near 140°C should be avoided possibly during injection molding process.


Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 414 ◽  
Author(s):  
Yean-Uk Kim ◽  
Doug-Hwan Choi ◽  
Ho-Young Ban ◽  
Beom-Seok Seo ◽  
Junhwan Kim ◽  
...  

Global warming is expected to affect yield-determining factors of soybean (Glycine max (L.) Merr.), including the number of flowers and pods. However, little is known about the effects of high temperature on the temporal patterns of flowering and pod set. Experiments in the temperature-controlled greenhouses were conducted to examine the temporal pattern of flowering in determinate soybean cultivar “Sinpaldalkong” and to assess the effects of high temperature on the flower number, pod-set ratio, and pod number of the early- and late-opened-flowers and their contributions to overall pod number. The experiment comprised five sowing dates in 2013–2015 and four temperature treatments, namely ambient temperature (AT), AT + 1.5 °C, AT + 3.0 °C, and AT + 5.0 °C. Flowering duration (i.e., days between the first flowering and the last flowering) was extended by higher temperature and earlier sowing. The temporal distribution of flowering showed a bimodal distribution except for the experiment with the shortest flowering duration, i.e., second sowing in 2014. More flowers were produced in the late flowering period at high temperatures; however, most of these late-opened-flowers failed to reproduce, regardless of temperature conditions, resulting in a negligible contribution to the overall pod number. For the early-opened-flowers, the number of flowers was not significantly affected by temperature, while the pod-set ratio and pod number decreased with high temperatures resulting in a decrease in the overall pod number at temperatures above 29.4 °C.


2009 ◽  
Vol 68 ◽  
pp. 34-43 ◽  
Author(s):  
Ana L. Salas-Villaseñor ◽  
José Lemus-Ruiz ◽  
Makoto Nanko ◽  
Daisuke Maruoka

Crack disappearance by high-temperature oxidation was studied in alumina (Al2O3) composites toughened by Ni nanoparticles. This process is performed in air at temperature ranging from 1000 to 1300°C for 1 to 48 h. The results showed that crack disappearance depends on both annealing temperature and time. Complete crack disappearance in this composite was confirmed at lower temperatures for long oxidation period, 1100oC for 48 h, and higher temperature for shorter time, 1300oC for 1 h in air. The crack disappearance mechanism was explained on the basis of the formation of NiAl2O4 spinel on sample surfaces produced by the oxidation reaction during the heat treatment.


2016 ◽  
Vol 870 ◽  
pp. 181-184 ◽  
Author(s):  
S.M. Nikiforova ◽  
M.A. Filippov ◽  
A.S. Zhilin

Influence of different type heat treatment including high temperature quenching on wear resistance has been investigated. The two investigated steels are widely used in production of mud pumps. It was shown that Kh12MFL had better wear resistance in comparison with 150KhNML. Martensitic-carbide structure of the steels formed by quenching from high temperatures (900 – 1000 °С) induced good hardness (61 – 64 HRC). Analysis of the residual austenite contents influence on wear resistance was also made. It was determined that residual austenite formed after high temperature quenching (900 – 1000 °С) was metastable and had tendency to transform into carbon containing martensite of deformation. This allowed steels to have maximum wear resistance because of providing high abilities to friction hardening of the work place of the sample.


2014 ◽  
Vol 809-810 ◽  
pp. 815-821
Author(s):  
Xiao Hu Hua ◽  
Xiao Gang Wang ◽  
Jia Qing Yang ◽  
Shu He Lu ◽  
Li Rong Deng ◽  
...  

Anthracite and bitumite were processed respectively at 1400°C,1700°C, 2000°C, 2200°C, 2400°C and 2600°C,and their chemical composition,resistivity,microstructure, phase composition,and the internal migration of molecular functional group were tested and characterized. The results indicate that moisture, ash and volatile in coal have gradually shifted and lost with the elevation of heat treatment temperature, while the higher temperature, the quicker and completer phase change. Heat treatment can make the coal transform from approximately insulative phase to conductive phase,. Furthermore, as the temperature increases, the conductive phase transformation effect is better. The higher the heat treatment temperature of coal, the more amorphous carbon transforming into crystalline carbon completely, but the less types of phases .


2021 ◽  
Author(s):  
Wenxi Zhu ◽  
Xiuhua Zheng

Colloidal gas aphron (CGA) drilling fluids are a kind of environmentally-friendly underbalanced drilling technique, which has attracted more attention in depleted reservoirs and other low-pressure areas. With the shortage of global oil/gas resources, drilling has gradually shifted to high-temperature and deep wells. Hence, a study on the ultra-high temperature rheology properties of CGA fluids is lacking and urgently needed. In this study, a novel CGA drilling fluid system was prepared by modified starch and amino acid surfactant, and rheological properties after 120-300°C aged was investigate. Results show that: (1) Herschel-Bulkley model is the preferred model to predict CGA drilling fluid at ultra-high temperatures; (2) It was proved that CGA drilling fluid is a high-quality drilling fluid with extremely high value of LSRV and shear thinning property within 280°C. Compared to the traditional XG-based CGA drilling fluid, the improvement of LSRV at ultra-high temperatures is a significant advantage of EST-based CGA drilling fluid which is conducive to carrying cuttings and sealing formation pores.


2015 ◽  
Vol 2015 (1) ◽  
pp. 000459-000464 ◽  
Author(s):  
John McConnell ◽  
J. Bultitude ◽  
J. Qazi ◽  
J. Magee ◽  
C. Shearer ◽  
...  

Transient Liquid Phase Sintering is a process that provides high temperature Pb-free RoHS compliant interconnect solutions that exceed the high temperature capabilities of Pb-Sn solders. KEMET, working in collaboration with Ormet Circuits Inc. has successfully applied Ormet's TLPS technology to a line of Leaded Multi-layer Ceramic Capacitors (MLCC) components for high temperature applications. The material is Pb-free, RoHS compliant and able to withstand process and operating temperatures > 400°C while having initial processing temperatures of less than 300°C. Potential applications for TLPS are in the automotive, aerospace, oil, gas, and geothermal exploration industries where electronics are being exposed to higher operating temperatures and require robust interconnects capable of withstanding harsh environments.


2014 ◽  
Vol 887-888 ◽  
pp. 223-227
Author(s):  
Yu Mei Dai ◽  
Yong Qing Ma ◽  
Yan Bin Wu ◽  
Ya Nan Ji

6CrW2MoVSi steel has a refined and even microstructure after heat treatment, the average size of annealing carbide is 0.6 μm; quenching martensite is mainly lath-shaped martensite and only a small amount of acicular martensite, and the size of quenching acicular at 950 °C is smaller than 2.5 μm. The curve of quenching hardness increasing with quenching temperature rising is divided into three sections. In the middle section of quenching between 910 °C ~ 980 °C, quenching hardness presents slow rising trend. After higher temperature quenching, there are low and high temperature tempering precipitation hardening zones. At 220 °C ~ 240 °C tempering temperature, precipitation hardness is HRC54 ~ 58. At 540 °C ~ 570 °C tempering temperature, precipitation hardness is HRC52 ~ 56.


2019 ◽  
Vol 27 (05) ◽  
pp. 1950151
Author(s):  
DONGJING LIU ◽  
WEIGUO ZHOU ◽  
JIANG WU

Perovskite LaFeO3/ZSM-5 is synthesized via citrate route for H2S removal at high temperatures. It shows good thermal stability after heat treatment at 500–700∘C with respect to slight changes in crystallographic phase and textural property. It presents the optimal desulfurization performance at 600∘C with sulfur capacity of 1017[Formula: see text][Formula: see text]mol[Formula: see text]S/g and products of S, LaS2, and Fe7S8. Sulfidation at 500∘C yields the same products as sulfidation at 600∘C but displays the lowest sulfur capacity of 408[Formula: see text][Formula: see text]mol[Formula: see text]S/g. Sulfidation at 700∘C produces La2O2S, Fe3S4, and unreacted LaFeO3. The activation energy of the sulfidation reaction over LaFeO3/ZSM-5 is 109.6[Formula: see text]kJ/mol.


Sign in / Sign up

Export Citation Format

Share Document