The Structure of Neoprene. I. The Molecular-Weight Distribution of Neoprene Type GN

1949 ◽  
Vol 22 (3) ◽  
pp. 680-689
Author(s):  
W. E. Mochel ◽  
J. B. Nichols ◽  
C. J. Mighton

Abstract Polychloroprene rubber (Neoprene Type GN) was fractionated by partial precipitation from dilute solution in benzene and the fractions were examined both osmotically and viscometrically in benzene solutions. The molecular-weight distribution curve for Neoprene Type GN based on osmotic pressure measurements shows a pronounced maximum at 100,000, but has a long extension to molecular weights of over one million, indicating the presence of branched or cross-linked material which is still soluble. The uniformity is somewhat less than that of sol natural rubber, while in shape the Neoprene distribution curve resembles more closely that of peptized natural rubber than fresh sol rubber. Observed variations in the slopes of the π/c vs. c and the ηsp/c vs. c curves also indicate the presence in solution of complex, branched and (or) cross-linked molecules. Calibration of the intrinsic viscosity-molecular weight relationship by osmotic pressure measurements gave good agreement with the equation: [η]=KMa, where K=1.46×10−4 and a=0.73.

1972 ◽  
Vol 45 (1) ◽  
pp. 346-358 ◽  
Author(s):  
A. Subramaniam

Abstract The Waters Model 200 Gel Permeation Chromatograph has been used to study the molecular weight distribution of natural rubber. The cumulative weight distribution curve of synthetic cis-polyisoprene from the GPC method showed fair agreement with the distribution obtained by fractional precipitation. For natural rubber the agreement was not so good. Natural rubber samples from six clones of Hevea Brasiliensis were examined with the GPC. Differences were observed in their distributions. Five clones showed a distinct bimodal distribution. The weight and number average molecular weights from the GPC were found to be too low. Some possible reasons for this have been suggested.


Author(s):  
A. A. Khvostov ◽  
S. G. Tikhomirov ◽  
I. A. Khaustov ◽  
A. A. Zhuravlev ◽  
A. V. Karmanov

The paper deals with the problem of mathematical modeling of the process of thermochemical destruction using the theory of graphs. To synthesize a mathematical model, the Markov chain is used. For the formalization of the model a matrix-graph method of coding is used. It is proposed to consider the process of destruction as a random process, under which the state of the system changes, characterized by the proportion of macromolecules in each fraction of the molecular mass distribution. The intensities of transitions from state to state characterize the corresponding rates of destruction processes for each fraction of the molecular weight distribution (MWD). The processes of crosslinking and polymerization in this work have been neglected, and it is accepted that there is a probability of transition from any state with a lower order index (corresponding to fractions with higher molecular weights) to any state with a higher index (corresponding fractions with lower molecular weights). A computational formula is presented for estimating the number of arcs and model parameters from a given number of fractions of the molecular weight distribution of the polymer. An example of coding in a matrix form of a graph model of the process of degradation of polybutadiene in solution for the case of six fractions of the molecular weight distribution is shown. As the simulation environment, the interactive graphical simulation environment of MathWorks Simulink is used. To evaluate the parameters of the mathematical model, experimental studies of the degradation of polybutadiene in solution were carried out. The chromatography of the polybutadiene solution was used as the initial data for the estimation of the MWD polymer. The considered matrix-graph representation of the structure of the mathematical model of the polymer destruction process makes it possible to simplify the compilation of the model and its software implementation in the case of a large number of vertices of the graph describing the process of destruction


2021 ◽  
Author(s):  
Maciej Łojkowski ◽  
Adrian Chlanda ◽  
Emilia Choińska ◽  
Wojciech Swieszkowski

<p>The formation of complex structures in thin films is of interest in many fields. Segregation of polymer chains of different molecular weights is a well-known process. However, here, polystyrene with bimodal molecular weight distribution, but no additional chemical modification was used. It was proven that at certain conditions, the phase separation occurred between two fractions of bimodal polystyrene/methyl ethyl ketone solution. The films were prepared by spin-coating, and the segregation between polystyrene phases was investigated by force spectroscopy. Next, water vapour induced secondary phase separation was investigated. The introduction of moist airflow induced the self-assembly of the lower molecular weight into islands and the heavier fraction into a honeycomb. As a result, an easy, fast, and effective method of obtaining island/honeycomb morphologies was demonstrated. The possible mechanisms of the formation of such structures were discussed.</p>


1999 ◽  
Vol 72 (4) ◽  
pp. 712-720 ◽  
Author(s):  
Jitladda Tangpakdee Sakdapipanich ◽  
Tippawan Kowitteerawut ◽  
Krisda Suchiva ◽  
Yasuyuki Tanaka

Abstract The linear character of transesterified deproteinized natural rubber (DPNR-TE) was confirmed by the analysis of terminal groups with NMR and viscometric analyses. The branch content of DPNR rubber from fresh latex was found to range from 0.3 to 1.3 and 0.7 to 3.2, based on tri- and tetra-functionalities, respectively. The plot between the number of branch-points and molecular weight (MW) can be divided into three fractions: (A) the rubber fractions in MW ranging from 2.4×105 to 1.9×106; (B) between 1.9×105 and 2.4×105; and (C) those of MW less than 1.9×105. The fraction (A) showed the number of branch-points per a branched molecule (m) higher than that of fractions (B) and (C). This plot is superimposable with the bimodal molecular-weight distribution (MWD) of Hevea rubber, showing a good coinciding of peak-tops at the high and low MW fractions. It seems likely that there is a close relationship between the number of branch-point and bimodal MWD of natural rubber.


1967 ◽  
Vol 40 (4) ◽  
pp. 1084-1093 ◽  
Author(s):  
Jack B. Carmichael ◽  
James Heffel

Abstract Data are reported for the equilibrium molecular size distributions of cyclic and linear methylsiloxanes in five polymers with number average molecular weights ranging from 459 to 1348. The distributions of linear species agree with the earlier work of Scott and agree reasonably well with the Flory theory of random reorganization. The amounts of cyclic molecules are sharply dependent on molecular weight. However, the equilibrium constants for cyclic formation for cyclic species with four to eight units are shown to be virtually identical with the equilibrium constants for cyclic formation in high molecular weight polymers reported in a previous publication. For octamethylcyclotetrasiloxane, Kav in moles of siloxane units per liter was found to be 0.72 in this study. For high polymers, Kav was previously reported to be 0.74.


2021 ◽  
Author(s):  
Maciej Łojkowski ◽  
Adrian Chlanda ◽  
Emilia Choińska ◽  
Wojciech Swieszkowski

<p>Segregation of polymer chains of different molecular weights is a well-known process. A traditional experimental approach of studying phase segregation in thin films composed of polymer blends with identical chemical compositions but different molecular weights was focused on functionalisation of chemical group or modification of end-group. In this study, however, a different approach was proposed. Polystyrene with bimodal molecular weight distribution, but no additional chemical modification was used. The films were prepared by spin-coating and the segregation between polystyrene phases was investigated by force spectroscopy. The solubility of bimodal polystyrene was explored. At the right molecular weight distribution and soluted in Methyl Ethyl Ketone, the phase segregation occurred. Introduction of moist airflow induced the separation of the lower molecular weight into micropillars and the heavier fraction self-organized into a honeycomb. As a result, an easy, fast, and effective method of obtaining micropillar/honeycomb morphologies was demonstrated. The mechanism of formation of such structures was explained. </p>


1973 ◽  
Vol 135 (4) ◽  
pp. 649-653 ◽  
Author(s):  
Richard A. Gibbons ◽  
Stephen N. Dixon ◽  
David H. Pocock

A specimen of intestinal glycoprotein isolated from the pig and two samples of dextran, all of which are polydisperse (that is, the preparations may be regarded as consisting of a continuous distribution of molecular weights), have been examined in the ultracentrifuge under meniscus-depletion conditions at equilibrium. They are compared with each other and with a glycoprotein from Cysticercus tenuicollis cyst fluid which is almost monodisperse. The quantity c−⅓(c=concentration) is plotted against ξ (the reduced radius); this plot is linear when the molecular-weight distribution approximates to the ‘most probable’, i.e. when Mn:Mw:Mz: M(z+1)....... is as 1:2:3:4: etc. The use of this plot, and related procedures, to evaluate qualitatively and semi-quantitatively molecular-weight distribution functions where they can be realistically approximated to Schulz distributions is discussed. The theoretical basis is given in an Appendix.


1977 ◽  
Author(s):  
Grant H. Barlow

The determination of molecular weight distribution using the sedimentation equilibrium analysis developed for polymers by T. Scholte (J. Polymer Sei, 6, 111, 1968) has been adapted for heparin analysis. Pork mucosal heparin separated into molecular weight subfractions by gel filtration on Ultrogel AcA44 (L.K.B.) was used to test the validity and resolving power of the method. Results indicate that the method is able to differentiate molecular weight distribution satisfactorily. Comparisons have been made of molecular weight distribution of samples from different species, organs and manufacturers. Average molecular weights for most samples center around 15,000 Dal tons, but samples show considerable variation in their distribution data. Results suggest that variations between manufacturers is more pronounced than the specie and organ difference indicating the importance of the purification procedure.


Sign in / Sign up

Export Citation Format

Share Document