Direct Comparison of Some Recent Rubber Elasticity Models

2000 ◽  
Vol 73 (2) ◽  
pp. 366-384 ◽  
Author(s):  
D. J. Seibert ◽  
N. Schöche

Abstract The paper compares the Arruda—Boyce model, the van der Waals model and the Reduced Polynomial model—a generic class of polynomial models of which Yeoh's cubic model is a special case—in their ability to predict multiaxial deformation states on the basis of uniaxial measurements. These models are reviewed in the light of novel experimental data, giving ample space to the derivation of the equations needed for optimization of the material parameters. The technological relevance of these findings is exemplified in the finite element analysis (FEA) of a complex membrane.

2012 ◽  
Vol 184-185 ◽  
pp. 534-537
Author(s):  
Jing Jing Zhou ◽  
Ai Dong Guo ◽  
Chun Hui Li ◽  
Zhen Jiang Lin ◽  
Tie Zhuang Wu

By setting contact sets, achieved overall analysis results of the mechanical properties with omni-direction side-loading forklift truck lifting system based on COSMOSWorks. And made an experimental measurements to omni-direction side-loading forklift truck lifting system by electrometric methods. There was a good relevance between experimental data and calculation values, and the deviation was basically within the 10 percent allowed. Finally, in this way it verified the correctness and reliability of the finite element analysis by experimental measurements. Ensured the omni-direction side-loading forklift truck lifting system could be safe and efficient to work. And also it laid a foundation for subsequent structural optimization.


2013 ◽  
Vol 721 ◽  
pp. 382-386 ◽  
Author(s):  
Ze Fei Wei ◽  
Xing Hua Zheng ◽  
Zi Yuan Yu

The paper mainly focused on burr removal of the miniature hole drilled on aluminum plate by electrochemical machining. A mathematical model for the electrochemical deburring of miniature holes (M-ECD) was established based on the finite element analysis to the current density distribution. Both theoretical analysis and experimental study were held on the effects of many factors to the deburring results. The results proved that predictions based on our mathematical model were agreed with the experimental data comparatively.


2007 ◽  
Vol 546-549 ◽  
pp. 1563-1566
Author(s):  
Min Li ◽  
Bao Yan Zhang ◽  
Xiang Bao Chen

Unsymmetric composite laminates were benefit to reducing the structure weight of some aircrafts. However, the cured unsymmetric laminates showed distortion at room temperature. Therefore, predicting the deformation before using the unsymmetrical composite is very important. In this study an attempt was made to predict the shapes of some unsymmetric cross-ply laminates using the finite element analysis (FEA). The bilinear shell-element was adopted in the process. Then the simulation results were compared with the experimental data. The studies we had performed showed that the theoretical calculation agreed well with the experimental results, the predicted shapes were similar to the real laminates, and the difference between the calculated maximum deflections and the experimental data were less than 5%. Hence the FEA method was suitable for predicting the warpage of unsymmetric laminates. The error analysis showed that the simulation results were very sensitive to the lamina thickness, 2 α and (T.


Author(s):  
T.S. Sultanmagomedov ◽  
◽  
R.N. Bakhtizin ◽  
S.M. Sultanmagomedov

In article present the developed methodology will allow monitoring pipeline displacements under changes in operating conditions, as well as simulating unfavorable processes (thawing of soil, formation of taliks, violation of thermal insulation). The planning of the experiment was carried out to obtain the calculated mechanical characteristics of the soil, depending on the temperature and humidity, used to calculate the stress-strain state of the pipeline. A mathematical computer model has been developed to determine the radius and temperature field of the thawing halo around the pipeline. A template for displaying experimental data for their use in the finite element analysis of pipeline displacements during soil thawing is presented.


1982 ◽  
Vol 26 (02) ◽  
pp. 117-124
Author(s):  
Thomas L. Geers

A boundary-element method for treatment of the fluid-structure interaction in slamming analysis is described. The method emphasizes simplicity and efficiency, so that the analyst may devote most of his computational resources to the analysis of the structure. Numerical results for a number of rigid-impactor problems are compared with analytical solutions and experimental data, and procedures for the finite-element analysis of flexible impactors are discussed.


1975 ◽  
Vol 97 (1) ◽  
pp. 85-91 ◽  
Author(s):  
T. Muraki ◽  
J. J. Bryan ◽  
K. Masubuchi

This is the second part of a study of thermal stresses and metal movement during welding. Part I described the finite-element analysis of two-dimensional thermal stresses and metal movement during bead-on-plate and butt welding. Part II presents results of experiments on bead-on-plate and butt welds in 6061-T6 aluminum alloy. Measurements were made of changes of temperature, thermal strains, and metal movement during welding. The paper then compares experimental data with analytical results. Good agreements were obtained between experimental and analytical results.


2019 ◽  
Vol 10 (1) ◽  
pp. 197
Author(s):  
Ah-Der Lin ◽  
Sian Zheng Poon ◽  
Hong-Wei Tu ◽  
Cheng-Yi Chen ◽  
Chao-Ming Hsu

In this study, the optical sphere and the power analyzer were exploited to measure the optical and power parameters for the high-power LED lamps. The results, derived from the experimental data, were used as the power distribution inputs in the finite element analysis (FEA) for the determination of the temperature distribution for the printed circuit board assembly (PCBA) built in the LED lamp. In the finite element analysis, the conjugate heat transfer model was adapted for the calculation of the heat transfer, including thermal conductivity, convection and radiation. Applied on the power chips located on the PCBA, the graphene thermal interface material (TIMs) had been studied for its effects on the temperature distribution. For an accurate simulation about the LED lamp, the model with closed and compact space was built in the analysis. Compared to the experimental data, it showed that the simulation results had a deviation in the range of 3–5% around the main heating source, the light-emitting diodes. It proves the FEA model proposed in this study were well developed for the simulation of the temperature distribution for the high-power LED lamps which have mixed heat transfer mechanisms. The thermal radiation effects by TIMs with graphene were also investigated in this study and proven to be useful for the heat dissipation for the LED lamps.


2008 ◽  
Vol 36 (1) ◽  
pp. 63-79 ◽  
Author(s):  
L. Nasdala ◽  
Y. Wei ◽  
H. Rothert ◽  
M. Kaliske

Abstract It is a challenging task in the design of automobile tires to predict lifetime and performance on the basis of numerical simulations. Several factors have to be taken into account to correctly estimate the aging behavior. This paper focuses on oxygen reaction processes which, apart from mechanical and thermal aspects, effect the tire durability. The material parameters needed to describe the temperature-dependent oxygen diffusion and reaction processes are derived by means of the time–temperature–superposition principle from modulus profiling tests. These experiments are designed to examine the diffusion-limited oxidation (DLO) effect which occurs when accelerated aging tests are performed. For the cord-reinforced rubber composites, homogenization techniques are adopted to obtain effective material parameters (diffusivities and reaction constants). The selection and arrangement of rubber components influence the temperature distribution and the oxygen penetration depth which impact tire durability. The goal of this paper is to establish a finite element analysis based criterion to predict lifetime with respect to oxidative aging. The finite element analysis is carried out in three stages. First the heat generation rate distribution is calculated using a viscoelastic material model. Then the temperature distribution can be determined. In the third step we evaluate the oxygen distribution or rather the oxygen consumption rate, which is a measure for the tire lifetime. Thus, the aging behavior of different kinds of tires can be compared. Numerical examples show how diffusivities, reaction coefficients, and temperature influence the durability of different tire parts. It is found that due to the DLO effect, some interior parts may age slower even if the temperature is increased.


2001 ◽  
Vol 29 (3) ◽  
pp. 134-154 ◽  
Author(s):  
J. R. Luchini ◽  
M. M. Motil ◽  
W. V. Mars

Abstract This paper discusses the measurement and modeling of tire rolling resistance for a group of radial medium truck tires. The tires were subjected to tread depth modifications by “buffing” the tread surface. The experimental work used the equilibrium test method of SAE J-1269. The finite element analysis (FEA) tire model for tire rolling resistance has been previously presented. The results of the testing showed changes in rolling resistance as a function of tread depth that were inconsistent between tires. Several observations were also inconsistent with published information and common knowledge. Several mechanisms were proposed to explain the results. Additional experiments and models were used to evaluate the mechanisms. Mechanisms that were examined included tire age, surface texture, and tire shape. An explanation based on buffed tread radius, and the resulting changes in footprint stresses, is proposed that explains the observed experimental changes in rolling resistance with tread depth.


Sign in / Sign up

Export Citation Format

Share Document