Role of Compatibilization in Polymer Nanocomposites

2009 ◽  
Vol 82 (3) ◽  
pp. 340-368 ◽  
Author(s):  
Robert D. Kroshefsky ◽  
Jack L. Price ◽  
Duryodhan Mangaraj

Abstract Polymeric nanocomposites based on nanoclay, nanosilica, carbon nanotubes, and ceramic or mineral nanoparticles have been developed for a variety of applications. The large surface-to-mass ratios of these particles require good adsorption of the polymeric material on the particle surface to provide the adhesion levels between the filler and matrix resin necessary for improved performance. We review the basic principles underlying these surface interactions and their application in the preparation of a variety of these nanocomposites, as well as in explaining their performance. We demonstrate that the principles underlying the compatibilization of polymer blends and alloys can be successfully used to design nanocomposites and understand their performance.

1991 ◽  
Vol 63 (6) ◽  
pp. 561-568 ◽  
Author(s):  
Graham J. Leggett ◽  
John C. Vickerman

2014 ◽  
Vol 2 (35) ◽  
pp. 14289-14328 ◽  
Author(s):  
Horacio J. Salavagione ◽  
Ana M. Díez-Pascual ◽  
Eduardo Lázaro ◽  
Soledad Vera ◽  
Marián A. Gómez-Fatou

The performance of chemical sensors based on polymer nanocomposites with CNTs and graphene is revised, highlighting the role of the polymeric material.


Soft Matter ◽  
2019 ◽  
Vol 15 (10) ◽  
pp. 2178-2189 ◽  
Author(s):  
Maria Valldeperas ◽  
Aleksandra P. Dabkowska ◽  
Gunnar K. Pálsson ◽  
Sarah Rogers ◽  
Najet Mahmoudi ◽  
...  

Stabilizer P80 concentrated to lipid liquid crystalline particle surface, but contributes also to the inner sponge phase structure. Particles spread on surfaces to form bilayers.


Author(s):  
Luiza В. Atlukhanova ◽  
Igor V. Dolbin ◽  
Georgii V. Kozlov

Целью настоящей работы является раздельное определение модуля упругос-ти компонент нанокомпозитов полидициклопентандиен/многослойные углеродные на-нотрубки, а именно, нанонаполнителя и межфазных областей. Для достижения этой целииспользована микромеханическая модель.Выполненные оценки продемонстрировали, что модуль упругости углеродных нанотрубокв полимерной матрице нанокомпозита, т. е., их агрегатов, приблизительно на два поряд-ка меньше номинальной величины этого параметра для отдельной углеродной нанотруб-ки, тогда как модуль упругости межфазных областей примерно в два раза выше модуляупругости матричного полимера. Эти данные ясно демонстрируют некорректность при-менения номинальных характеристик нанонаполнителя, в частности, его модуля упру-гости, для определения соответствующих показателей нанокомпозита. Однако использо-вание реальных величин модуля упругости агрегатов углеродных нанотрубок в рамкахпростого правила смесей позволяет достаточно точное описание этого параметра в случаенанокомпозитов. Важно отметить, что модуль упругости углеродных нанотрубок в элас-томерной матрице существенно меньше этого параметра в стеклообразной матрице дляодного и того же нанокомпозита. Это означает, что указанный параметр определяется нетолько размерами и структурой агрегатов нанонаполнителя, но также и другими факто-рами, в частности, жесткостью окружающей агрегат полимерной матрицы, эффективнос-тью переноса приложенного к образцу механического напряжения от полимерной мат-рицы к нанонаполнителю и т. п.Применение модифицированного правила смесей для описания модуля упругости нано-композитов показало, что включенный в него, так называемый, фактор эффективностидлины в случае анизотропного нанонаполнителя существенно меньше (на несколькопорядков) рассчитанного теоретически для углеродных нанотрубок, что особенно очевид-но выражено в случае нанокомпозитов с эластомерной матрицей.В качестве вывода укажем, что модуль упругости компонент нанокомпозита являетсясильной функцией их фазового состояния, а определение реальных характеристик этихкомпонент позволяет корректное применение простого правила смесей.       ЛИТЕРАТУРА1. Moniruzzaman M., Winey K.I. Polymer nanocomposites containing carbon nanotubes // Macromolecules,2006, v. 39(16), p. 5194. DOI: https://doi.org/10.1021/ma060733p2. Schaefer D. W., Justice R. S. How nano are nanocomposites? // Macromolecules, 2007, v. 40(24), p. 8501.DOI: https://doi.org10.1021/ma070326w3. Coleman J. N., Cadek M., Ryan K. P., Fonseca A., Nady J. B., Blau W. J., Ferreira M. S. Reinforcement ofpolymers with carbon nanotubes. The role of an ordered polymer intwrfacial region. Experimental andmodeling // Polymer, 2006, v. 47(23), pp. 8556–8561. DOI: https://doi.org/10/1016/j.polymer.2006.10.0144. Kozlov G. V., Yanovskii Yu. G., Zaikov G. E. Particulate-Filled Polymer Nanocomposites. Structure,Properties, Perspectives. New York, Nova Science Publishers, Inc., 2014. DOI: https://doi.org/10.1002/9783527644346.ch35. Mikitaev A. K., Kozlov G. V., Zaikov G. E. Polymer Nanocomposites: Variety of Structural Forms and Applications.New York, Nova Science Publishers, Inc., 2008.6. Jeong W., Kessler M.R. Toughness enhancement in ROMP functionalized carbon nanotube/polydicyclopentadienecomposites. Chem. Mater., 2008. v. 20(22), р. 7060. DOI: https://doi.org/10.1021/cm80209477. Koerner H., Liu W., Alexander M., Mirau P., Dowty H., Vaia R. A. Deformation – morphology correlationsin electrically conductive carbon nanotube – thermoplastic polyurethane nanocomposites // Polymer, 2005, v. 46(12), р. 4405. DOI: https://doi.org/10.1016/j.polymer.2005.02.0258. Ahmed S., Jones F. R. A review of particulate reinforcement theories of polymer composites // J.Mater. Sci., 1990, v. 25(12), pp. 4933–4942. DOI: https://doi.org/10.1007/bf005801109. Aygubova A. Ch., Kozlov G. V., Magomedov G. M., Zaikov G. E. The elastic modulus of carbon nanotubeaggregates in polymer nanocomposites. J. Characterization and Development of Novel Mater., 2016, v. 8(3), p. 227.10. Khan U., May P., O’Neill A., Bell A.P., Boussac E., Martin A., Semple J., Coleman J. N. Polymer reinforcementusing liquid-exfoliated boron nitride nanosheets // Nanoscale, 2013, v. 5(3), pp. 581-587. DOI: https://doi.org/10.1039/c2nr33049k


2021 ◽  
Author(s):  
Maximilian RIes ◽  
Gunnar Possart ◽  
Paul Steinmann ◽  
Sebastian Pfaller

This contribution introduces an unconventional procedure to characterize spatial profiles of elastic and inelastic properties inside polymer interphases around nanoparticles. Interphases denote those regions in the polymer matrix whose mechanical properties are influenced by the filler surfaces and thus deviate from the bulk properties. They are of particular relevance in case of nano-sized filler particles with a comparatively large surface-to-volume ratio and hence can explain the frequent observation that the overall properties of polymer nanocomposites cannot be determined by classical mixing rules, which only consider the behavior of the individual constituents.Interphase characterization for nanocomposites poses hardly solvable challenges to the experimenter and is still an unsolved problem in many cases. Instead of real experiments, we perform pseudo experiments using our recently developed Capriccio method, which is an MD-FE domain-decomposition tool specifically designed for amorphous polymers. These pseudo-experimental data then serve as input for a typical inverse parameter identification. With this procedure, spatially varying mechanical properties inside the polymer are, for the first time, translated into intuitively understandable profiles of continuum mechanical parameters.As a model material, we employ silica-enforced polystyrene, for which our procedure reveals exponential saturation profiles for Young's modulus and the yield stress inside the interphase, where the former takes about seven times the bulk value at the particle surface and the latter roughly triples. Interestingly, hardening coefficient and Poisson's ratio of the polymer remain nearly constant inside the interphase. Besides gaining insight into the constitutive influence of filler particles, these unexpected and intriguing results also offer interesting explanatory options for the failure behavior of polymer nanocomposites.


2008 ◽  
Vol 108 (3) ◽  
pp. 1462-1472 ◽  
Author(s):  
V. H. Antolín-Cerón ◽  
S. Gómez-Salazar ◽  
V. Soto ◽  
M. Ávalos-Borja ◽  
S. M. Nuño-Donlucas

Sign in / Sign up

Export Citation Format

Share Document