EFFECTS OF SURFACE TREATMENTS AND SILICA SIZE ON MECHANICAL PROPERTIES OF SILICA-REINFORCED ELASTOMERIC COMPOSITES

2014 ◽  
Vol 87 (2) ◽  
pp. 264-275 ◽  
Author(s):  
Sang-Ryeoul Ryu ◽  
Jun-Man Lee ◽  
Dong-Joo Lee

ABSTRACT The effect of surface treatments with atmospheric pressure flame plasma (APFP) and epoxy silane (ES) was studied experimentally to improve the mechanical properties of silica- (volume 40% and mean diameters of 2.2, 12.4, 26.6, and 110 μm) reinforced elastomeric composites. The tensile strength (TS) of the composites increased significantly with decreasing mean diameter. When the diameter was 2.2 μm, the TS of the composite was approximately 1.4 times higher than that of the matrix (2.52 MPa). In addition, the TS of the silica-reinforced composites treated with APFP and ES was increased by 8.8 to 13.3% and 9.9 to 12.5%, respectively, compared with that of the matrix. A larger particle size generally resulted in better surface treatment effects. When the diameter was 26.6 μm, the tensile modulus (TM) of the composite was increased approximately twofold compared with the matrix (0.88 MPa), and the TM of the silica-reinforced composites treated with APFP and ES was increased by 15.6 to 22.8% and 21.1 to 25.8%, respectively, compared with the matrix. Therefore, the importance of surface treatments increases with increasing filler particle size. A conventional silane-coupling agent treatment has few disadvantages, such as the use of organic solvents. Nevertheless, the APFP treatment is a fast, economic, and eco-friendly method for improving the mechanical properties.

2021 ◽  
Vol 30 ◽  
pp. 263498332110074
Author(s):  
Henry C Obasi ◽  
Uchechi C Mark ◽  
Udochukwu Mark

Conventional inorganic fillers are widely used as fillers for polymer-based composites. Though, their processing difficulties and cost have demanded the quest for credible alternatives of organic origin like coconut shell fillers. Dried shells of coconut were burnt, ground, and sifted to sizes of 63, 150, 300, and 425 µm. The ground coconut shell particles (CSP) were used as a filler to prepare polypropylene (PP) composites at filler contents of 0% to 40% via injection melt blending process to produce PP composite sheets. The effect of the filler particle size on the mechanical properties was investigated. The decrease in the size of filler (CSP) was found to improve the yield strength, tensile strength, tensile modulus, flexural strength, flexural modulus, and hardness of PP by 8.5 MPa, 15.75 MPa, 1.72 GPa, 7.5 MPa, 100 MPa, and 10.5 HR for 63 µm at 40%, respectively. However, the elongation at break and modulus of resilience of the PP composites were seen to increase with increase in the filler size. Scanning electron microscope analysis showed that fillers with 63 µm particle size had the best distribution and interaction with the PP matrix resulting in enhanced properties.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2836
Author(s):  
Mohammed N. Alghamdi

Fly ash polymer composites are innovative high-performance materials that reduce the environmental worries and disposal complications of heavy industry produced fly ash. This study developed and characterized such composites of high-density polyethylene (HDPE) matrices and found that the use of small (50–90 µm) particles of fly ash could give rise to the tensile modulus (~95%) and tensile strength (~7%) of their reinforced composites when compared to neat HDPE materials. While these results themselves convey a strong message of how fly ash can be effectively utilized, this was not the key aim of the current study. The study was extended to examine the effect of fly ash particle size on the recyclability of relevant HDPE composites. The extrusion-based multiple recycling of composites gave slightly lower mechanical properties, primarily due to filler/matrix delamination when large fly ash particles were used. Compared to freshly made fly ash-filled HDPE composites, although using small (50–90 µm) fly ash particles reduced the tensile modulus and tensile strength of recycled composites, the values were still far above those from neat HDPE materials. This novel insight directs the effective utilization of fly ash and provides long-term sustainable and economical solutions for their practical applicability.


2011 ◽  
Vol 115 (31) ◽  
pp. 15124-15132 ◽  
Author(s):  
Chalida Klaysom ◽  
Seung-Hyeon Moon ◽  
Bradley P. Ladewig ◽  
G. Q. Max Lu ◽  
Lianzhou Wang

2006 ◽  
Vol 977 ◽  
Author(s):  
Toshihira Irisawa ◽  
Masatoshi Shioya ◽  
Haruki Kobayashi ◽  
Junichi Kaneko

AbstractThe wear resistance and the mechanical properties of polymer matrix composite fibers filled with inorganic fillers have been investigated in order to find out the way to increase the wear resistance of the fibers without losing tensile modulus and strength. Nylon 6 and poly(ethylene terephthalate) have been used as the matrix polymer and aluminum borate whisker and carbon nanotube have been used as the fillers. The wear resistance of the fibers has been evaluated by observing the fiber cross section after the side of the fiber was worn using a rotating drum covered with abrasive paper. The wear resistance of the nylon 6 and PET fibers was increased by the addition of these fillers without the loss of tensile modulus and strength. The effects of the addition of the fillers on the wear resistance have been compared with the effects of stretching and heat treatment of the fibers.


Sign in / Sign up

Export Citation Format

Share Document