INVESTIGATION OF THE VULCANIZATION CHARACTERISTICS OF NATURAL RUBBER COAGULATED BY MICROORGANISMS

2017 ◽  
Vol 90 (3) ◽  
pp. 521-535 ◽  
Author(s):  
Si-Dong Li ◽  
Jing Chen ◽  
Le-Fan Li ◽  
Zhi-Fen Wang ◽  
Jie-Ping Zhong ◽  
...  

ABSTRACT The network variations of NR during the vulcanization process were investigated by 1H chemical shift by liquid-state 1H-NMR spectroscopy. NR latexes coagulated by microorganisms (NR-m) or acid (NR-a) were contrasted. The influences of coagulation on the structures, vulcanization characteristics, and mechanical properties of NR were analyzed. The results show that the cross-link density (XLD) and mass percentage of cross-link network [A(Mc)] increased with the increment of the vulcanization time, whereas the mass percentage of bangling free ends of the hydrocarbon and small molecules [A(T2)], the longitudinal relaxation time (T1), the transverse relaxation time (T2), and the molecular mass of inter–cross-link chains (Mc) decreased with the prolonging of vulcanization time for both NR-m and NR-a. Although NR-m exhibits shorter scorch times and optimum cure time, it shows higher maximum torque and minimum torque than that of NR-a. It is obvious that the higher XLD and A(Mc), the lower the A(T2), T1, T2, and Mc values of NR-m, resulting in higher stress, tensile strength, and tear strength of NR compounds.

2018 ◽  
Vol 91 (1) ◽  
pp. 64-78
Author(s):  
Si-Dong Li ◽  
Jing Chen ◽  
Le-Fan Li ◽  
Zhi-Fen Wang ◽  
Jie-Ping Zhong ◽  
...  

ABSTRACT The network variations of natural rubber (NR) during the vulcanization process were investigated by 1H chemical shift by liquid-state 1H nuclear magnetic resonance (NMR) spectroscopy. NR latex coagulated by microorganisms (NR-m) was contrasted with NR latex coagulated by acid (NR-a). The influences of the coagulation process on the structures, vulcanization characteristics, and mechanical properties of NR were analyzed. The results show that the cross-link density (XLD) and mass percentage of cross-link network (A(Mc)) can be increased with the increment of the vulcanization time; while the mass percentage of dangling free ends of the hydrocarbon and small molecules (A(T2)), the longitudinal relaxation time (T1), transverse relaxation time (T2), and molecular mass of inter–cross-link chains (Mc) decreased with the prolonging of vulcanization time both NR-m and NR-a. NR-m exhibits shorter scorch times (ts1, ts2) and optimum cure time (t90) and shows higher maximum torque (MH) and minimum torque (ML) than that of NR-a. It is obvious that the higher XLD and A(Mc) and lower A(T2), T1, T2, and Mc values of NR-m result in higher stress, tensile strength, and tear strength of NR compounds.


2022 ◽  
Vol 961 (1) ◽  
pp. 012100
Author(s):  
Ahmed K Hassan ◽  
Zuhair Jabbar Abdul Ameer

Abstract This work is focused on the upper part of the prosthesis which is called a socket, it is in contact connect with the amputated part. The shear force between skin and socket, local pressure, sweating, and bacteria generation, all lead to skin inflammation and a bad smell. Consequently, the prosthesis became uncomfortable for a patient. To address this issue silicone rubber liners is proposed to use because it can absorb moisture, stress distribution, and anti-bacterial. The curing time and temperature are important factors for determining crosslink density, from the results obtained, can be noticed that, the cross-link density can greatly affect the silicone rubber properties, it can have a direct effect on the tensile strength, modulus of elasticity, percentage of elongation as well as the water absorption, and the cure time (15 min.) shoes the best resalt. As a result, using it making the prosthesis more comfortable and acceptable to the patient. In this paper, the effect of cure time on physical properties was studied.


Author(s):  
K. S. Zhansakova ◽  
E. N. Eremin ◽  
G. S. Russkikh ◽  
O. V. Kropotin

The work studies vulcanization characteristics of elastomers based on isoprene rubber filled with carbon black N330 and boron nitride (BN). The influence of the boron nitride (BN) concentration on technological, dynamic, physical and mechanical properties of elastomers has been researched. The application of boron nitride for producing rubber with good properties has been considered. With a gradual increase of the inert filler BN concentration up to 35%, a decrease in the curing rate by 33% and polymer cross-link density by 26% is observed. Moreover, the start time of vulcanization increases by almost 300%, the optimal curing time by 200%.


2021 ◽  
Author(s):  
Jacob Ishibashi ◽  
Ian Pierce ◽  
Alice Chang ◽  
Aristotelis Zografos ◽  
Bassil El-Zaatari ◽  
...  

<p>The composition of low-T<sub>g</sub> <i>n</i>-butylacrylate-<i>block</i>-(acetoxyaceto)ethyl acrylate block polymers is investigated as a strategy to tune the properties of dynamically cross-linked vinylogous urethane vitrimers. As the proportion of the cross-linkable block is increased, the thermorheological properties, structure, and stress relaxation evolve in ways that cannot be explained by increasing cross-link density alone. Evidence is presented that network connectivity defects such as loops and dangling ends are increased by microphase separation. The thermomechanical and viscoelastic properties of block copolymer-derived vitrimers arise from the subtle interplay of microphase separation and network defects.</p><div><br></div><p></p>


Geophysics ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. MR73-MR84 ◽  
Author(s):  
Fatemeh Razavirad ◽  
Myriam Schmutz ◽  
Andrew Binley

We have evaluated several published models using induced polarization (IP) and nuclear magnetic resonance (NMR) measurements for the estimation of permeability of hydrocarbon reservoir samples. IP and NMR measurements were made on 30 samples (clean sands and sandstones) from a Persian Gulf hydrocarbon reservoir. We assessed the applicability of a mechanistic IP-permeability model and an empirical IP-permeability model recently proposed. The mechanistic model results in a broader range of permeability estimates than those measured for sand samples, whereas the empirical model tends to overestimate the permeability of the samples that we tested. We also evaluated an NMR permeability prediction model that is based on porosity [Formula: see text] and the mean of the log transverse relaxation time ([Formula: see text]). This model provides reasonable permeability estimations for the clean sandstones that we tested but relies on calibrated parameters. We also examined an IP-NMR permeability model, which is based on the peak of the transverse relaxation time distribution, [Formula: see text] and the formation factor. This model consistently underestimates the permeability of the samples tested. We also evaluated a new model. This model estimates the permeability using the arithmetic mean of log transverse NMR relaxation time ([Formula: see text]) and diffusion coefficient of the pore fluid. Using this model, we improved estimates of permeability for sandstones and sand samples. This permeability model may offer a practical solution for geophysically derived estimates of permeability in the field, although testing on a larger database of clean granular materials is needed.


Sign in / Sign up

Export Citation Format

Share Document