scholarly journals Presentation of a New Method for the Fusion of Spatial-Temporal Land Surface Temperature Products of ASTER and MODIS Sensors Based on a Two-Dimensional Stationary Wavelet Transform

2021 ◽  
Vol 12 (4) ◽  
pp. 93-114
Author(s):  
alireza bazrgar ◽  
morteza tayebi
2017 ◽  
Vol 9 (5) ◽  
pp. 454 ◽  
Author(s):  
Yu-Ze Zhang ◽  
Hua Wu ◽  
Xiao-Guang Jiang ◽  
Ya-Zhen Jiang ◽  
Zhao-Xia Liu ◽  
...  

2021 ◽  
Vol 13 (24) ◽  
pp. 5044
Author(s):  
Ruiliang Pu ◽  
Stefania Bonafoni

The literature review indicates that a scaling effect does exist in downscaling land surface temperature (DLST) processes, and no substantial methods were specially developed for addressing it. In this research, the main aim is to develop a new method to reduce the scaling effect on DLST maps at high resolutions. A thermal component-based thermal spectral unmixing (TSU) model was modified and a multiple regression (REG) model was adopted to create DLST maps at high resolutions. A combined variance of red and NIR bands at a very high resolution with a difference image between upscaled LST and DLST was used to develop a new method. With two case data sets, LSTs at coarse resolutions were downscaled by using the modified TSU model and the REG model to create DLST results. The new method with a correction term expression (a linear model created by using a semi-empirical approach) was used to improve the DLST maps in the two case study areas. The experimental results indicate that the new method could reduce the root mean square error and the mean absolute error >30% and >33%, respectively, and thus demonstrate that the proposed method was effective and significant, especially reducing the scaling effect on DLST results at very high resolutions. The novel significance for the new method is directly reducing the scaling effect on DLST maps at high resolutions.


Author(s):  
Georgiana Grigoraș ◽  
Bogdan Urițescu

Abstract The aim of the study is to find the relationship between the land surface temperature and air temperature and to determine the hot spots in the urban area of Bucharest, the capital of Romania. The analysis was based on images from both moderate-resolution imaging spectroradiometer (MODIS), located on both Terra and Aqua platforms, as well as on data recorded by the four automatic weather stations existing in the endowment of The National Air Quality Monitoring Network, from the summer of 2017. Correlation coefficients between land surface temperature and air temperature were higher at night (0.8-0.87) and slightly lower during the day (0.71-0.77). After the validation of satellite data with in-situ temperature measurements, the hot spots in the metropolitan area of Bucharest were identified using Getis-Ord spatial statistics analysis. It has been achieved that the “very hot” areas are grouped in the center of the city and along the main traffic streets and dense residential areas. During the day the "very hot spots” represent 33.2% of the city's surface, and during the night 31.6%. The area where the mentioned spots persist, falls into the "very hot spot" category both day and night, it represents 27.1% of the city’s surface and it is mainly represented by the city center.


2021 ◽  
Vol 1825 (1) ◽  
pp. 012021
Author(s):  
Nasrullah Zaini ◽  
Muhammad Yanis ◽  
Marwan ◽  
Muhammad Isa ◽  
Freek van der Meer

Land ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 20
Author(s):  
Yixu Wang ◽  
Mingxue Xu ◽  
Jun Li ◽  
Nan Jiang ◽  
Dongchuan Wang ◽  
...  

Although research relating to the urban heat island (UHI) phenomenon has been significantly increasing in recent years, there is still a lack of a continuous and clear recognition of the potential gradient effect on the UHI—landscape relationship within large urbanized regions. In this study, we chose the Beijing-Tianjin-Hebei (BTH) region, which is a large scaled urban agglomeration in China, as the case study area. We examined the causal relationship between the LST variation and underlying surface characteristics using multi-temporal land cover and summer average land surface temperature (LST) data as the analyzed variables. This study then further discussed the modeling performance when quantifying their relationship from a spatial gradient perspective (the grid size ranged from 6 to 24 km), by comparing the ordinary least squares (OLS) and geographically weighted regression (GWR) methods. The results indicate that: (1) both the OLS and GWR analysis confirmed that the composition of built-up land contributes as an essential factor that is responsible for the UHI phenomenon in a large urban agglomeration region; (2) for the OLS, the modeled relationship between the LST and its drive factor showed a significant spatial gradient effect, changing with different spatial analysis grids; and, (3) in contrast, using the GWR model revealed a considerably robust and better performance for accommodating the spatial non-stationarity with a lower scale dependence than that of the OLS model. This study highlights the significant spatial heterogeneity that is related to the UHI effect in large-extent urban agglomeration areas, and it suggests that the potential gradient effect and uncertainty induced by different spatial scale and methodology usage should be considered when modeling the UHI effect with urbanization. This would supplement current UHI study and be beneficial for deepening the cognition and enlightenment of landscape planning for UHI regulation.


Sign in / Sign up

Export Citation Format

Share Document