scholarly journals Heat Transfer Behaviour of Nano Fluid at High Pressure

2013 ◽  
Vol 1 (1) ◽  
pp. 1-3
Author(s):  
O.S. Prajapati ◽  
◽  
N. Rohatgi ◽  
A.K. Rajvanshi ◽  
◽  
...  

Recent investigations on nanofluids indicate that the suspended nanoparticles markedly change the heat transfer characteristics of the suspension. In this study, heat transfer characteristics of ZnO-water nanofluids were investigated. Experiments were conducted with ZnO-water nanofluids at particle volume concentrations up to 0.1 volume %, constant subcooling of 20°C, pressure 2 bar, mass flux 400 kg/m2 s and heat fluxes up to 500 kW/m2 with variable. Effect of heat flux and nanofluid concentration on heat transfer coefficient of ZnO-water nanofluids was investigated. Study reveals that heat transfer coefficient increases with ZnO-water nanofluids.

2021 ◽  
Vol 11 (2) ◽  
pp. 751
Author(s):  
Xuefeng Gao ◽  
Yanjun Zhang ◽  
Zhongjun Hu ◽  
Yibin Huang

As fluid passes through the fracture of an enhanced geothermal system, the flow direction exhibits distinct angular relationships with the geometric profile of the rough fracture. This will inevitably affect the heat transfer characteristics in the fracture. Therefore, we established a hydro-thermal coupling model to study the influence of the fluid flow direction on the heat transfer characteristics of granite single fractures and the accuracy of the numerical model was verified by experiments. Results demonstrate a strong correlation between the distribution of the local heat transfer coefficient and the fracture morphology. A change in the flow direction is likely to alter the transfer coefficient value and does not affect the distribution characteristics along the flow path. Increasing injection flow rate has an enhanced effect. Although the heat transfer capacity in the fractured increases with the flow rate, a sharp decline in the heat extraction rate and the total heat transfer coefficient is also observed. Furthermore, the model with the smooth fracture surface in the flow direction exhibits a higher heat transfer capacity compared to that of the fracture model with varying roughness. This is attributed to the presence of fluid deflection and dominant channels.


Author(s):  
Lorenzo Cremaschi

Driven by higher energy efficiency targets and industrial needs of process intensification and miniaturization, nanofluids have been proposed in energy conversion, power generation, chemical, electronic cooling, biological, and environmental systems. In space conditioning and in cooling systems for high power density electronics, vapor compression cycles provide cooling. The working fluid is a refrigerant and oil mixture. A small amount of lubricating oil is needed to lubricate and to seal the sliding parts of the compressors. In heat exchangers the oil in excess penalizes the heat transfer and increases the flow losses: both effects are highly undesired but yet unavoidable. This paper studies the heat transfer characteristics of nanorefrigerants, a new class of nanofluids defined as refrigerant and lubricant mixtures in which nano-size particles are dispersed in the high-viscosity liquid phase. The heat transfer coefficient is strongly governed by the viscous film excess layer that resides at the wall surface. In the state-of-the-art knowledge, while nanoparticles in the refrigerant and lubricant mixtures were recently experimentally studied and yielded convective in-tube flow boiling heat transfer enhancements by as much as 101%, the interactions of nanoparticles with the mixture still pose several open questions. The model developed in this work suggested that the nanoparticles in this excess layer generate a micro-convective mass flux transverse to the flow direction that augments the thermal energy transport within the oil film in addition to the macroscopic heat conduction and fluid convection effects. The nanoparticles motion in the shearing-induced and non-uniform shear rate field is added to the motion of the nanoparticles due to their own Brownian diffusion. The augmentation of the liquid phase thermal conductivity was predicted by the developed model but alone it did not fully explain the intensification on the two-phase flow boiling heat transfer coefficient reported in previous work in the literature. Thus, additional nano- and micro-scale heat transfer intensification mechanisms were proposed.


Author(s):  
S. Kabelac ◽  
K. B. Anoop

Nanofluids are colloidal suspensions with nano-sized particles (<100nm) dispersed in a base fluid. From literature it is seen that these fluids exhibit better heat transfer characteristics. In our present work, thermal conductivity and the forced convective heat transfer coefficient of an alumina-water nanofluid is investigated. Thermal conductivity is measured by a steady state method using a Guarded Hot Plate apparatus customized for liquids. Forced convective heat transfer characteristics are evaluated with help of a test loop under constant heat flux condition. Controlled experiments under turbulent flow regime are carried out using two particle concentrations (0.5vol% and 1vol %). Experimental results show that, thermal conductivity of nanofluids increases with concentration, but the heat transfer coefficient in the turbulent regime does not exhibit any remarkable increase above measurement uncertainty.


Author(s):  
P. Razi ◽  
M. A. Akhavan-Behabadi

An experimental investigation has been carried out to study the heat transfer characteristics of CuO-Base oil nanofluid flow inside horizontal flattened tubes under constant heat flux. The nanofluid flowing inside the tube is heated by an electrical heating coil wrapped around it. The convective heat transfer coefficients of nanofluids are obtained for laminar fully developed flow inside round and flattened tubes. The effect of different parameters such as Reynolds number, flattened tube internal height, nanoparticles concentration and heat flux on heat transfer coefficient is studied. Observations show that the heat transfer performance is improved as the tube profile is flattened. The heat transfer coefficient is increased by using nanofluid instead of base fluid. Also, it can be concluded that decreasing the internal height of the flattened tubes and increasing the concentration of nanoparticles both contribute to the enhancement of heat transfer coefficient.


Author(s):  
Ataollah Khanlari ◽  
Adnan Sözen ◽  
Halil İbrahim Variyenli

PurposeThe plate heat exchangers (PHE) with small size but large efficiency are compact types of heat exchangers formed by corrugated thin pressed plates, operating at higher pressures when compared to most other traditional exchangers. This paper aims to analyze heat transfer characteristics in the PHE experimentally and numerically.Design/methodology/approachComputational fluid dynamics analysis has been used to simulate the problem by using the ANSYS fluent 16 software. Also, the effect of using TiO2/water nanofluid as working fluid was investigated. TiO2/water nanofluid had 2% (Wt/Wt) nanoparticle content. To improve solubility of the TiO2nanoparticles, Triton X-100 was added to the mixture. The results have been achieved in different working condition with changes in fluid flow rate and its temperature.FindingsThe obtained results showed that using TiO2/water nanofluid improved the overall heat transfer coefficient averagely as 6%, whereas maximum improvement in overall heat transfer coefficient was 10%. Also, theoretical and experimental results are in line with each other.Originality/valueThe most important feature which separates the present study from the literature is that nanofluid is prepared by using TiO2nanoparticles in optimum size and mixing ratio with surfactant usage to prevent sedimentation and flocculation problems. This process also prevents particle accumulation that may occur inside the PHE. The main aim of the present study is to predict heat transfer characteristics of nanofluids in a plate heat exchanger. Therefore, it will be possible to analyze thermal performance of the nanofluids without any experiment.


Author(s):  
Jinpin Lin ◽  
Jingzhi Zhang ◽  
Ekaterina Sokolova ◽  
Wei Li

The heat transfer characteristics of supercritical China RP-3 aviation kerosene flowing downward in a vertical circular tube are numerically investigated. A ten-species surrogate model is used to calculate the thermophysical properties of kerosene and the Re-Normalization Group (RNG) k-ε model with the enhanced wall treatment is adopted to simulate the turbulent flow. The effects of diameter, wall heat flux, and pressure on temperature and heat transfer coefficient are studied. The numerical results show three types of heat transfer deterioration exist along the flow direction. The first deterioration at the tube inlet region is caused by the development of the thermal boundary layer, which exist whatever the operation condition is. The second and third kind of deterioration take place when the inner wall temperature or the bulk fuel temperature approaches the pseudo-critical temperature under a pressure close to the critical value. The heat transfer coefficients increase with decreasing diameter and increasing pressure. The increase of inlet pressure can effectively eliminate the deteriorations because the thermophysical properties change less near the critical point at higher pressure. The decrease of wall heat flux will delay the onsets of the second and third kind of deterioration. The numerical heat transfer coefficient fit well with the empirical correlations.


Author(s):  
Jingzhi Zhang ◽  
Naixiang Zhou ◽  
Jinpin Lin ◽  
Han Lin ◽  
Wei Li

Heat transfer characteristics of aviation kerosene were investigated numerically using a three-dimensional model. The influence of the ratio of longer axis to short axis of elliptical tubes (r), inlet Reynolds number (Re), and pressure (P) of kerosene on local heat transfer characteristics were discussed in detail. The results indicate that the heat transfer coefficient (h), wall temperature (Tw), and bulk fluid temperature (Tb) increase along Z axis direction from inlet to outlet when P=4Mpa. h increases with increasing r and Re, while Tw decreases with increasing Re and r. Tb decreases with increasing Re and remains stable for a varying r. For P=3Mpa, the deterioration of heat transfer occurs near the outlet of computational geometry, where the temperature of near wall region fluid exceeds the critical point and specific heat decrease dramatically. A correlation for heat transfer coefficient of aviation kerosene at supercritical pressure inside elliptical tubes is proposed and compared with the present simulation data. It is shown that this correlation can predict the simulation data within an ±15% error band. Compared with circular tubes, elliptical tubes can enhance the heat transfer effect and decrease the wall temperature, thus enhance the security of the operating system.


Author(s):  
Qiang Wang ◽  
Puzhen Gao ◽  
Xianbing Chen ◽  
Zhongyi Wang ◽  
Ying Huang

Natural circulation served as an indispensable part of nuclear, attracted much more attentions in recent years. It does not need a pump to provide power. The operating principle of natural circulation caused its complexity in analysis process. It was still a difficult issue to reveal the law of natural circulation accurately. Many experiments and calculations had to be conducted to study the basic physical regulation. This paper concentrated upon the heat transfer characteristics in the test section with two different types of heat flux distribution. The two types of heating flux distribution in the test section were linear and chopped cosine along axial direction. Based on a natural circulation experimental facility, physical models and mathematic models were established. RELAP5 code was used to calculate the thermal hydraulic state of natural circulation loop. The variation of heat transfer coefficient along flow direction was different. It was tightly related to heat flux. Some relevant experiments were conducted in many different conditions and steady sate experimental data were achieved to verified theoretical calculations. Experimental data, such as water temperature, wall temperature and flow rate were recorded when the system is stable. The heat transfer coefficients were calculated according to the experimental data. The factors that affected the heat transfer characteristics of natural circulation were analyzed by comparing the heat transfer coefficient under different conditions. The heat transfer coefficient was calculated according to the empirical correlations as well. After a series of analysis, the results indicated heat transfer coefficient had an obvious difference, which influenced ability of natural circulation. Comparing with experimental data, the evaluation of different empirical correlations was conducted in two test sections. Some empirical correlations turned out to be suitable for the estimation of heat transfer in experiment facility. The increase of heat flux could enhance heat transfer process in the two test section under low pressure. Average heat transfer coefficient increased with the decrease of inlet subcooling degree. The system pressure effected the heat transfer characteristics of natural circulation as well. The increase of mass flux would promote heat transfer while the level was different. RELAP5 had a great agreement with experimental data in single phase flow. Natural circulation ability was influenced by the position of average heat source center, which was slightly different in the research objects. The research would lend strong empirical support to the guideline of experiment and subsequence study in natural circulation.


Author(s):  
Adnan Alashkar ◽  
Mohamed Gadalla

In this present paper, nanoparticles are dispersed into a base fluid, their effect on the thermophysical properties and overall heat transfer coefficient of the fluid inside a circular tube representing an absorber tube of a Parabolic Trough Solar Collector (PTSC) is studied. Different models are used to predict the effective density, specific heat capacity, viscosity and thermal conductivity of the nanofluids. For the analytical analysis, Alumina (Al2O3), Copper (Cu) and Single Wall Carbon Nanotubes (SWCNT) nanoparticles are dispersed into Therminol VP-1 oil. The resulting nanofluids are compared in terms of their thermophysical properties, their convective heat transfer characteristics and their overall heat transfer coefficient. Moreover, the effect on increasing the volume fraction on the properties and the heat transfer coefficient is studied. The computational analysis results show that the thermal conductivity increases with the increase of the volume fraction. In addition Therminol/SWCNT showed the highest thermal conductivity enhancement of 98% for a volume fraction of 3%. Further, the overall heat transfer coefficient increases with the increase of volume fraction, and Therminol/SWCNT showed the highest enhancement with 72% compared to Al2O3/Therminol and Cu/Therminol that showed an enhancement of 29% and 43% respectively.


2009 ◽  
Vol 131 (8) ◽  
Author(s):  
Randeep Singh ◽  
Aliakbar Akbarzadeh ◽  
Masataka Mochizuki

Two phase heat transfer devices based on the miniature version of loop heat pipe (LHP) can provide very promising cooling solutions for the compact electronic devices due to their high heat flux management capability and long distance heat transfer with minimal temperature losses. This paper discusses the effect of the wick properties on the heat transfer characteristics of the miniature LHP. The miniature model of the LHP with disk-shaped evaporator, 10 mm thick and 30 mm disk diameter, was designed using copper containment vessel and water as the working fluid, which is the most acceptable combination in electronic cooling applications. In the investigation, wick structures with different physical properties including thermal conductivity, pore radius, porosity, and permeability and with different structural topology including monoporous or biporous evaporating face were used. It was experimentally observed that copper wicks are able to provide superior thermal performance than nickel wicks, particularly for low to moderate heat loads due to their low heat conducting resistance. With monoporous copper wick, maximum evaporator heat transfer coefficient (hev) of 26,270 W/m2 K and evaporator thermal resistance (Rev) of 0.06–0.10°C/W were achieved. For monoporous nickel wick, the corresponding values were 20,700 W/m2 K for hev and 0.08–0.21°C/W for Rev. Capillary structure with smaller pore size, high porosity, and high permeability showed better heat transfer characteristics due to sufficient capillary pumping capability, low heat leaks from evaporator to compensation chamber and larger surface area to volume ratio for heat exchange. In addition to this, biporous copper wick structure showed much higher heat transfer coefficient of 83,787 W/m2 K than monoporous copper wick due to improved evaporative heat transfer at wick wall interface and separated liquid and vapor flow pores. The present work was able to classify the importance of the wick properties in the improvement of the thermal characteristics for miniature loop heat pipes.


Sign in / Sign up

Export Citation Format

Share Document