scholarly journals Tower based L-Band radiometric measurements and in-situ snow temperatures

Author(s):  
Author(s):  
Nicolas Kolodziejczyk ◽  
Mathieu Hamon ◽  
Jacqueline Boutin ◽  
Jean-Luc Vergely ◽  
Gilles Reverdin ◽  
...  

AbstractTen years of L-Band radiometric measurements have proven the capability of satellite Sea Surface Salinity (SSS) to resolve large scale to mesoscale SSS features in tropical to subtropical ocean. In mid to high latitude, L-Band measurements still suffer from large scale and time systematic errors. Here, a simple method is proposed to mitigate the large scale and seasonal varying biases. First, an Optimal Interpolation (OI) using a large correlation scale (~500 km) is used to map independently Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) Level 3 data. The mapping is compared to the equivalent mapping of in situ observations to estimate the large scale and seasonal biases. A second mapping is performed on adjusted SSS at the scale of SMOS/SMAP spatial resolution (~45 km). This procedure merges both products, and increases the signal to noise ratio of the absolute SSS estimates, reducing the RMSD of in situ-satellite products by about 26-32% from mid to high latitude, respectively, in comparison to the existing SMOS and SMAP L3 products. However, in the Arctic Ocean, some issues on satellite retrieved SSS related to e.g. radio frequency interferences, land-sea contamination, ice-sea contamination remain challenging to reduce given the low sensitivity of L-Band radiometric measurements to SSS in cold water. Using the thermodynamic equation of state (TEOS-10), the resulting L4 SSS satellite product is combined with satellite-microwave SST products to estimate sea surface density, spiciness, haline contraction and thermal expansion coefficients. For the first time, we illustrate how useful are these satellite derived parameters to fully characterize the surface ocean water masses at large mesoscale.


Author(s):  
F. Demontoux ◽  
M. Gati ◽  
M. el Boudali ◽  
L. Villard ◽  
JP Wigneron ◽  
...  

2015 ◽  
Vol 9 (5) ◽  
pp. 5719-5773
Author(s):  
A. Roy ◽  
A. Royer ◽  
O. St-Jean-Rondeau ◽  
B. Montpetit ◽  
G. Picard ◽  
...  

Abstract. This study aims to better understand and quantify the uncertainties in microwave snow emission models using the Dense Media Radiative Theory-Multilayer model (DMRT-ML) with in situ measurements of snow properties. We use surface-based radiometric measurements at 10.67, 19 and 37 GHz in boreal forest and subarctic environments and a new in situ dataset of measurements of snow properties (profiles of density, snow grain size and temperature, soil characterization and ice lens detection) acquired in the James Bay and Umijuaq regions of Northern Québec, Canada. A snow excavation experiment – where snow was removed from the ground to measure the microwave emission of bare frozen ground – shows that small-scale spatial variability in the emission of frozen soil is small. Hence, variability in the emission of frozen soil has a small effect on snow-covered brightness temperature (TB). Grain size and density measurement errors can explain the errors at 37 GHz, while the sensitivity of TB at 19 GHz to snow increases during the winter because of the snow grain growth that leads to scattering. Furthermore, the inclusion of observed ice lenses in DMRT-ML leads to significant improvements in the simulations at horizontal polarization (H-pol) for the three frequencies (up to 20 K of root mean square error). However, the representation of the spatial variability of TB remains poor at 10.67 and 19 GHz at H-pol given the spatial variability of ice lens characteristics and the difficulty in simulating snowpack stratigraphy related to the snow crust. The results also show that for ground-based radiometric measurements, forest emission reflected by the surface leads to TB underestimation of up to 40 K if neglected. We perform a comprehensive analysis of the components that contribute to the snow-covered microwave signal, which will help to develop DMRT-ML and to improve the required field measurements. The analysis shows that a better consideration of ice lenses and snow crusts is essential to improve TB simulations in boreal forest and subarctic environments.


2020 ◽  
Vol 12 (4) ◽  
pp. 650
Author(s):  
Pablo Sánchez-Gámez ◽  
Carolina Gabarro ◽  
Antonio Turiel ◽  
Marcos Portabella

The European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) and the National Aeronautics and Space Administration (NASA) Soil Moisture Active Passive (SMAP) missions are providing brightness temperature measurements at 1.4 GHz (L-band) for about 10 and 4 years respectively. One of the new areas of geophysical exploitation of L-band radiometry is on thin (i.e., less than 1 m) Sea Ice Thickness (SIT), for which theoretical and empirical retrieval methods have been proposed. However, a comprehensive validation of SIT products has been hindered by the lack of suitable ground truth. The in-situ SIT datasets most commonly used for validation are affected by one important limitation: They are available mainly during late winter and spring months, when sea ice is fully developed and the thickness probability density function is wider than for autumn ice and less representative at the satellite spatial resolution. Using Upward Looking Sonar (ULS) data from the Woods Hole Oceanographic Institution (WHOI), acquired all year round, permits overcoming the mentioned limitation, thus improving the characterization of the L-band brightness temperature response to changes in thin SIT. State-of-the-art satellite SIT products and the Cumulative Freezing Degree Days (CFDD) model are verified against the ULS ground truth. The results show that the L-band SIT can be meaningfully retrieved up to 0.6 m, although the signal starts to saturate at 0.3 m. In contrast, despite the simplicity of the CFDD model, its predicted SIT values correlate very well with the ULS in-situ data during the sea ice growth season. The comparison between the CFDD SIT and the current L-band SIT products shows that both the sea ice concentration and the season are fundamental factors influencing the quality of the thickness retrieval from L-band satellites.


1989 ◽  
Vol 27 (3) ◽  
pp. 305-311 ◽  
Author(s):  
James R. Wang ◽  
James C. Shiue ◽  
Thomas J. Schmugge ◽  
Edwin T. Engman

2021 ◽  
Author(s):  
Jacqueline Boutin ◽  
Jean-Luc Vergely ◽  
Emmanuel Dinnat ◽  
Philippe Waldteufel ◽  
Francesco D'Amico ◽  
...  

<p>We derived a new parametrisation for the dielectric constant of the ocean (Boutin et al. 2020). Earlier studies have pointed out systematic differences between Sea Surface Salinity retrieved from L-band radiometric measurements and measured in situ, that depend on Sea Surface Temperature (SST). We investigate how to cope with these differences given existing physically based radiative transfer models. In order to study differences coming from seawater dielectric constant parametrization, we consider the model of Somaraju and Trumpf (2006) (ST) which is built on sound physical bases and close to a single relaxation term Debye equation. While ST model uses fewer empirically adjusted parameters than other dielectric constant models currently used in salinity retrievals, ST dielectric constants are found close to those obtained using the Meissner and Wentz (2012) (MW) model. The ST parametrization is then slightly modified in order to achieve a better fit with seawater dielectric constant inferred from SMOS data. Upgraded dielectric constant model is intermediate between KS and MW models. Systematic differences between SMOS and in situ salinity are reduced to less than +/-0.2 above 0°C and within +/-0.05 between 7 and 28°C. Aquarius salinity becomes closer to in situ salinity, and within +/-0.1. The order of magnitude of remaining differences is very similar to the one achieved with the Aquarius version 5 empirical adjustment of wind model SST dependency. The upgraded parametrization is recommended for use in processing the SMOS data. </p><p>The rationale for this new parametrisation, results obtained with this new parametrisation in recent SMOS reprocessings and comparisons with other parametrisations will be discussed.</p><p>Reference:</p><p>Boutin, J.,et al. (2020), Correcting Sea Surface Temperature Spurious Effects in Salinity Retrieved From Spaceborne L-Band Radiometer Measurements, IEEE TGRSS, doi:10.1109/tgrs.2020.3030488.</p>


2021 ◽  
Vol 13 (21) ◽  
pp. 4448
Author(s):  
Giuseppe Parrella ◽  
Irena Hajnsek ◽  
Konstantinos P. Papathanassiou

The knowledge of glacier zones’ extent and their temporal variations is fundamental for the retrieval of surface mass balance of glaciers and ice sheets. In this context, a key parameter is the firn line (FL), the lower boundary of the percolation zone, whose location is an indicator of time-integrated mass balance changes. Several approaches have been developed in the last decades to map the FL by means of Synthetic Aperture Radar (SAR) imagery, mainly exploiting backscatter intensities and their seasonal variation. In this paper, an alternative approach is proposed, based on co-polarisation phase differences (CPDs). In particular, CPDs are interpreted as the result of propagation through anisotropic firn layers and are, therefore, proposed as an indicator of the presence of firn. A model is employed to demonstrate the link between CPDs and firn depth, indicating the potential of polarimetric SAR to improve firn characterization beyond spatial extent and FL detection. The proposed approach is demonstrated on L-band airborne data, acquired on 21 May 2015 by the F-SAR sensor of DLR in West Greenland during the ARCTIC15 campaign, and validated with in-situ information available from other studies.


Sign in / Sign up

Export Citation Format

Share Document