scholarly journals Bacterial Coated Fertilizer Induced Resistance Against Wheat Stripe Rust

2021 ◽  
Vol 2 (2) ◽  
pp. 97-106
Author(s):  
Hasan Riaz ◽  
Zulqurnain Khan ◽  
Syed Shahid Hussain Shah ◽  
Muhammad Yasir Khurshid ◽  
Muhammad Asif Ali

Wheat is the second largest consumed cereal by humans after Rice and its high yield and production is very critical for ever increasing global population. The wheat crop is grown all over Pakistan and threatened by several limiting factors. Stripe rust, caused by Puccinia striiformis, is the most destructive wheat pathogen and can reduce yield up to 70% in Pakistan. The present study aimed at exploring the role of Zabardast urea, a bacterial coated urea with zinc,  in inducing resistance against wheat stripe rust. The study involved the collection and maintenance of stripe rust inoculum on Morroco cultivar which later used to inoculate seedlings of Akbar-2019 and Galaxy-2019 resistant and susceptible varieties with three different fertilizer levels viz. specialty fertilizer zabardast urea, plain urea with zinc and plain urea. The results demonstrated the positive role of bacterial coated urea with zinc and reduced the disease severity by 10% and 5% in susceptible and resistant cultivars, respectively, leaving resistant variety asymptomatic. The plain urea with zinc also decreased disease severity in susceptible variety Galaxy-2013 by 6% in comparison with plain urea treatment underlying the role of zinc in combating stripe rust. The study underlines the importance of specialty fertilizers in inducing resistance against stripe rust in wheat and needs further experimentation exploring the mechanisms involved in disease resistance under field conditions.   

2022 ◽  
Vol 11 (1) ◽  
pp. 29-43
Author(s):  
Sidra Sabir ◽  
Muhammad Arshad ◽  
Noshin Ilyas ◽  
Farah Naz ◽  
Muhammad Shoaib Amjad ◽  
...  

Abstract Green-synthesized nanoparticles have a tremendous antimicrobial potential to be used as an alternative to hazardous fungicides. In this study, the green synthesis of silver nanoparticles (AgNPs) was performed by using Moringa oleifera leaf extract as a reducing and stabilizing agent. The synthesized AgNPs were subjected to different characterization techniques. UV-visible spectroscopy confirmed the surface plasmon resonance band in the range of 400–450 nm, and zeta analysis revealed that the synthesized AgNPs ranged 4–30 nm in size. Scanning electron microscopy depicted tiny fused rectangular segments and the crystalline nature of the synthesized AgNPs was confirmed using X-ray diffraction. Energy dispersive X-ray (EDX) detector confirmed the presence of metallic silver ions. Fourier-transform infrared analysis revealed the presence of phenols as main reducing agents in the plant extract. Foliar application of different concentrations (25, 50, 75, and 100  ppm) of AgNPs was applied on wheat plants inoculated with Puccinia striiformis to assess the disease incidence against stripe rust disease. AgNPs at a conc. of 75 ppm were found to be more effective against wheat stripe rust disease. Furthermore, the application of AgNPs enhanced morpho-physiological attributes and reduced nonenzymatic compounds and antioxidant enzymes in wheat. The present study highlights the potential role of the green-synthesized AgNPs as a biological control of yellow rust disease.


Pathogens ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 434
Author(s):  
Sajid Mehmood ◽  
Marina Sajid ◽  
Jie Zhao ◽  
Lili Huang ◽  
Zhensheng Kang

Understanding the interactions between the host and the pathogen is important in developing resistant cultivars and strategies for controlling the disease. Since the discovery of Berberis and Mahonia spp. as alternate hosts of the wheat stripe rust pathogen, Puccinia striiformis Westend. f. sp. tritici Erikss. (Pst), their possible role in generating new races of Pst through sexual reproduction has become a hot topic. To date, all the investigations about the role of alternate hosts in the occurrence of the wheat stripe rust epidemics revealed that it depends on alternate host species and environmental conditions. In this review, we summarized the current status of alternate hosts of Pst, their interactions with the pathogen, their importance in genetic diversity and disease epidemics. Most importantly, the recent research progress in understanding the role of alternate hosts of Pst is provided.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jan Bettgenhaeuser ◽  
Inmaculada Hernández-Pinzón ◽  
Andrew M. Dawson ◽  
Matthew Gardiner ◽  
Phon Green ◽  
...  

AbstractCrop losses caused by plant pathogens are a primary threat to stable food production. Stripe rust (Puccinia striiformis) is a fungal pathogen of cereal crops that causes significant, persistent yield loss. Stripe rust exhibits host species specificity, with lineages that have adapted to infect wheat and barley. While wheat stripe rust and barley stripe rust are commonly restricted to their corresponding hosts, the genes underlying this host specificity remain unknown. Here, we show that three resistance genes, Rps6, Rps7, and Rps8, contribute to immunity in barley to wheat stripe rust. Rps7 cosegregates with barley powdery mildew resistance at the Mla locus. Using transgenic complementation of different Mla alleles, we confirm allele-specific recognition of wheat stripe rust by Mla. Our results show that major resistance genes contribute to the host species specificity of wheat stripe rust on barley and that a shared genetic architecture underlies resistance to the adapted pathogen barley powdery mildew and non-adapted pathogen wheat stripe rust.


2015 ◽  
Vol 7 (1) ◽  
pp. 170-174
Author(s):  
Rakesh Devlash ◽  
Naval Kishore ◽  
Guru Dev Singh

Under field conditions, various fungicide molecules were validated for their effectiveness on barley (Hordeum vulgare L.) stripe rust Puccinia striiformis f. sp. consecutively for three years under artificial field epiphytotic conditions. Seven fungicides viz., propiconazole 25%EC (tilt @ 0.1%), tebuconazole 25.9% m/m EC (folicur @ 0.1%), triademefon 25%WP (bayleton @ 0.1%), propiconazole 25%EC (tilt @ 0.05%), tebuconazole 25.9% m/m EC (folicur @ 0.05%), triademefon 25%WP (bayleton@ 0.05%), and mancozeb 75%WP (dithane M45 @ 0.2%) with variousconcentrations were tested for their effectiveness in controlling barley stripe rust severity. All fungicide applications resulted in lower disease severity and higher grain yields than untreated check plots. All the fungicides @ 0.1% concentrations reduced disease severity ranging from 87.8% to 95.6% except Mancozeb @ 0.2% (34.4%). Significant higher yield was obtained with Propiconazole @ 0.1% (26.7 q/ha) followed by Tebuconazole @ 0.1% (25.2 q/ha) and Triademefon @ 0.1% (24.5 q/ha). The present study revealed propiconazole as the most effective fungicide for the control of stripe rust of barley under epiphytotic conditions.


2005 ◽  
Vol 95 (8) ◽  
pp. 884-889 ◽  
Author(s):  
Vihanga Pahalawatta ◽  
Xianming Chen

Most barley cultivars are resistant to stripe rust of wheat that is caused by Puccinia striiformis f. sp. tritici. The barley cv. Steptoe is susceptible to all identified races of P. striiformis f. sp. hordei (PSH), the barley stripe rust pathogen, but is resistant to most P. striiformis f. sp. tritici races. To determine inheritance of the Steptoe resistance to P. striiformis f. sp. tritici, a cross was made between Steptoe and Russell, a barley cultivar susceptible to some P. striiformis f. sp. tritici races and all tested P. striiformis f. sp. hordei races. Seedlings of parents and F1, BC1, F2, and F3 progeny from the barley cross were tested with P. striiformis f. sp. tritici races PST-41 and PST-45 under controlled greenhouse conditions. Genetic analyses of infection type data showed that Steptoe had one dominant gene and one recessive gene (provisionally designated as RpstS1 and rpstS2, respectively) for resistance to races PST-41 and PST-45. Genomic DNA was extracted from the parents and 150 F2 plants that were tested for rust reaction and grown for seed of F3 lines. The infection type data and polymorphic markers identified using the resistance gene analog polymorphism (RGAP) technique were analyzed with the Mapmaker computer program to map the resistance genes. The dominant resistance gene in Steptoe for resistance to P. striiformis f. sp. tritici races was mapped on barley chromosome 4H using a linked microsatellite marker, HVM68. A linkage group for the dominant gene was constructed with 12 RGAP markers and the microsatellite marker. The results show that resistance in barley to the wheat stripe rust pathogen is qualitatively inherited. These genes might provide useful resistance against wheat stripe rust when introgressed into wheat from barley.


PLoS ONE ◽  
2011 ◽  
Vol 6 (8) ◽  
pp. e24230 ◽  
Author(s):  
Dario Cantu ◽  
Manjula Govindarajulu ◽  
Alex Kozik ◽  
Meinan Wang ◽  
Xianming Chen ◽  
...  

Plant Disease ◽  
2019 ◽  
Vol 103 (6) ◽  
pp. 1206-1212
Author(s):  
Bingyao Chu ◽  
Lujia Yang ◽  
Cuicui Wang ◽  
Yilin Gu ◽  
Kai Yuan ◽  
...  

Wheat stripe rust caused by Puccinia striiformis f. sp. tritici is one of the most destructive diseases of wheat worldwide. Sichuan Province plays an important role in interregional epidemics in China. Application of host resistance is important in disease management, and efficient approaches to evaluate resistance level are necessary to obtain useful varieties. In this study, 100 wheat cultivars (lines) growing in Sichuan were selected to evaluate their resistance to stripe rust. Field experiments were conducted with a mixture of three P. striiformis f. sp. tritici races for inoculations at seeding and adult stages in the 2014 to 2015 season and the 2016 to 2017 season. Leaf samplings were conducted four times during the latent period at early growth stage of wheat. The sampled leaves were processed to extract DNA. The DNA of both wheat and P. striiformis f. sp. tritici was quantified using real-time quantitative polymerase chain reaction, and the molecular disease index (MDI) was used to evaluate the resistance level. The area under the disease progress curve in terms of disease index (AUDPC-DI) was obtained for each studied cultivar (line) in the fields. Among the 100 studied cultivars (lines), 61% of them showed seedling resistance, and 63 and 65% showed adult resistance in the 2014 to 2015 and 2016 to 2017 seasons, respectively, based on the infection type. High consistency in resistance grouping by cluster analysis as the percentage of the studied cultivar (line) belonging to the same group based on AUDPC-DI data and based on MDI data was obtained. The correlations between AUDPC-DI and MDI from samples collected on 9 and 14 or 15 days after inoculation during the latent period were all significant at P < 0.01. This study provided a new and efficient method for evaluation of varietal resistance to wheat stripe rust.


2005 ◽  
Vol 95 (9) ◽  
pp. 972-982 ◽  
Author(s):  
Christina Cowger ◽  
LaRae D. Wallace ◽  
Christopher C. Mundt

Controversy has long existed over whether plant disease epidemics spread with constant or with increasing velocity. We conducted largescale field experiments with wheat stripe rust at Madras and Hermiston, Oregon, where natural stripe rust epidemics were rare, to test these competing models. Data from three location-years were available for analysis. A susceptible winter wheat cultivar was planted in pure stand and also in a 1:4 or 1:1 mixture with a cultivar immune to the stripe rust race utilized in the experiments. Plots were 6.1 m wide and varied from 73 to 171 m in length. A 1.5 by 1.5-m focus was inoculated in either the center (2001) or upwind of the center (2002 and 2003) of each plot. Disease severity was evaluated weekly throughout the epidemics in each plot at the same points along a transect running upwind and downwind from the focus. Velocity of spread was calculated from the severity data and regressed separately on time and on distance from the focus. In all location-years and treatments, and at all levels of disease severity, velocity consistently increased linearly with distance, at an average rate of 0.59 m/week per m, and exponentially with time. Further, across epidemics there was a significant positive relationship between the apparent infection rate, r, and the rate of velocity increase in both space and time. These findings have important implications for plant diseases with a focal or partially focal character, and in particular for the effectiveness of ratereducing disease management strategies at different spatial scales.


Sign in / Sign up

Export Citation Format

Share Document