Floating micro particles of Stavudine: An Exceptional approach for Gastric retention and Sustainable drug action

Author(s):  
Ande Hemanth Kumar ◽  
Preethi Sudheer ◽  
Ashwini M.

Stavudine is synthetic analog of reverse transcriptase inhibitor possessing a short half-life of 0.8 to 1.5 hours. Therefore frequent administration of the medication is required which results in poor patient acceptability The following research work aims to prepare the floating microparticles of stavudine with an intention to increase the gastric retention time. Microparticles were prepared via emulsion solvent diffusion method utilizing Eudragit S 100 and Eudragit L 100 as the rate controlling polymers. The influence of these polymers and its compositions on various formulation parameters in addition to the in vitro release characteristics of the microspheres was investigated. The particle size of the prepared microparticles were found to be in the range of 108.25µm to 152.41µm. Free flowing particles which are spherical free flowing with a buoyancy ≥12 hour in the simulated gastric fluid were obtained. The drug content of the selected micro particles (F12) showed an encapsulation efficiency of up to 85.28±0.18%. In vitro release profiles of floating microspheres indicated a sustained drug release up to 14 hours. Thus, the present formulations could be a superior alternative to conventional oral therapy due to the sustained drug action.

Author(s):  
Dilip Kumar Gupta ◽  
B K Razdan ◽  
Meenakshi Bajpai

The present study deals with the formulation and evaluation of mefloquine hydrochloride nanoparticles. Mefloquine is a blood schizonticidal quinoline compound, which is indicated for the treatment of mild-to-moderate acute malarial infections caused by mefloquine-susceptible multi-resistant strains of P. falciparum and P. vivax. The purpose of the present work is to minimize the dosing frequency, taste masking toxicity and to improve the therapeutic efficacy by formulating mefloquine HCl nanoparticles. Mefloquine nanoparticles were formulated by emulsion diffusion method using polymer poly(ε-caprolactone) with six different formulations. Nanoparticles were characterized by determining its particle size, polydispersity index, drug entrapment efficiency, drug content, particle morphological character and drug release. The particle size ranged between 100 nm to 240 nm. Drug entrapment efficacy was >95%. The in-vitro release of nanoparticles were carried out which exhibited a sustained release of mefloquine HCl from nanoparticles up to 24 hrs. The results showed that nanoparticles can be a promising drug delivery system for sustained release of mefloquine HCl.


Author(s):  
V K Verma ◽  
Ram A

 Solid lipid nanoparticles (SLNs) of piroxicam where produced by solvent emulsification diffusion method in a solvent saturated system. The SLNs where composed of tripamitin lipid, polyvinyl alcohol (PVAL) stabilizer, and solvent ethyl acetate. All the formulation were subjected to particle size analysis, zeta potential, drug entrapment efficiency, percent drug loading determination and in-vitro release studies. The SLNs formed were nano-size range with maximum entrapment efficiency. Formulation with 435nm in particle size and 85% drug entrapment was subjected to scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for surface morphology, differential scanning calorimetry (DSC) for thermal analysis and short term stability studies. SEM and TEM confirm that the SLNs are nanometric size and circular in shape. The drug release behavior from SLNs suspension exhibited biphasic pattern with an initial burst and prolong release over 24 h. 


Author(s):  
DHARMENDER PALLERLA ◽  
SUMAN BANOTH ◽  
SUNKARI JYOTHI

Objective: The objective of this study was to formulate and evaluate the Curcumin (CUR) encapsulated sodium alginate (SA)/badam gum (BG)/kaolin (KA) microbeads for controlled drug release studies. Methods: The fabricated microbeads were characterized by fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (X-RD), and scanning electron microscopy (SEM). Dynamic swelling studies and in vitro release kinetics were performed in simulated intestinal fluid (pH 7.4) and simulated gastric fluid (pH 1.2) at 37 °C. Results: FTIR confirms the formation of microbeads. DSC studies confirm the polymorphism of CUR in drug loaded microbeads which indicate the molecular level dispersion of the drug in the microbeads. SEM studies confirmed the microbeads are spherical in shape with wrinkled and rough surfaces. XRD studies reveal the molecular dispersion of CUR and the presence of KA in the developed microbeads. In vitro release studies and swelling studies depend on the pH of test media, which might be suitable for intestinal drug delivery. The % of drug release values fit into the Korsmeyer-Peppas equation and n values are obtained in the range of 0.577-0.664, which indicates that the developed microbeads follow the non-Fickian diffusion drug release mechanism. Conclusion: The results concluded that the CUR encapsulated microbeads are potentially good carriers for controlled drug release studies.


Author(s):  
Maysam M. Abass ◽  
Nawal A. Rajab

Nanosponges (NS) of etodolac(ETO) was prepared using the emulsion solvent diffusion method ; the effects of drug: polymer ratio, the effect of level concentration of internal phase and stirring time and other variables that effect on the physical characteristics of NS were investigated and characterized, The selected formula was lyophilized then incorporated into hydrogel ; which also evaluated .The results show that the formulation that contain Drug: PVA:EC in ratio 1:3:2 is the best with smallest particle size 40.2±0.098 with polydispersibility0.005 and in vitro release 97.6±0.11%, , ETO NS Carbopol hydrogel produced a significant(p<0.05) improvement of the in vitro release than pure ETO hydrogel.


2017 ◽  
Vol 9 (4) ◽  
pp. 54 ◽  
Author(s):  
Jose Raul Medina ◽  
Jonathan Hernandez ◽  
Marcela Hurtado

Objective: To characterize the in vitro release of carbamazepine tablets and benzoyl metronidazole suspensions using the flow-through cell apparatus and simulated gastrointestinal fluids.Methods: Tegretol® tablets, Flagyl® suspension, and generic formulations of each were tested. Release studies were performed using an automated flow-through cell apparatus. Simulated gastric fluid (with and without pepsin) and simulated intestinal fluid (without pancreatin) at 16 ml/min and fasted state simulated intestinal fluid at 8 ml/min, all at 37.0±0.5 °C, were used as dissolution media. The quantity of dissolved carbamazepine and benzoyl metronidazole was determined at 5-min intervals until 60 min at 285 and 278 nm, respectively. Percentage dissolved at 60 min, mean dissolution time, dissolution efficiency values, and t10%, t25%, t50% and t63.2% were calculated. Mean values for all parameters were compared between the reference and generic formulations using Studentʼs t-test. Dissolution data were fitted to different kinetic models.Results: Simulated gastric fluid without pepsin showed no discriminative capability for carbamazepine tablets. Significant differences were observed between the reference and generic formulations for almost all parameters (*P<0.05). In some cases, the logistic model best described the in vitro release of both drugs.Conclusion: Using an apparatus and media that best simulates the gastrointestinal environment, we identified differences in the rate and extent of dissolution of both drugs that could help to optimise the design of interchangeable formulations. Based on the physicochemical characteristics of carbamazepine and benzoyl metronidazole and the conditions in which the formulations were tested, these differences could be of clinical relevance. 


Author(s):  
KARRAR TALIB KHUDHAIR ALBO HAMRAH ◽  
ABULFADHEL JABER NEAMAH AL-SHAIBANI ◽  
SARMAD SABAH AL-EDRESI ◽  
KARRAR MOHAMMED HASAN AL-GBURI

Objective: The present study was performed to compare the quality of conventional tablets loaded with candesartan cilexetil. The selected candesartan cilexetil tablets were commercialized in the Iraq market and produced by different companies.  Methods: Different batches of candesartan cilexetil oral tablets (the concentration of candesartan was 8 mg) were subjected to quality control tests. Tests included weight variation, friability, hardness, drug content, disintegration time and in vitro release study. The protocols of these tests were performed according to USP pharmacopeia. Results: The results, in this study, revealed that all the used batches of candesartan cilexetil oral tablets complied with the specification of USP pharmacopeia for weight uniformity, friability value (% loss) was<1. Hardness results of the tablets were 4.9-6.6 Kg/cm2, which was within the required limits (i.e. 4-8 Kg/cm2). Disintegration time was<15 min in both Simulated Gastric Fluid (SGF) and Simulated Intestinal Fluid (SIF). The percentage of drug content in all marketed tablets was found between 96.2 % and 99.8 %, reflecting compliance with the pharmacopeia limits (i.e. 85-115 %). An in vitro release study indicated that the release of all marketed tablets exceeds 80 % within 15 min. Conclusion: All the studied tablets, loaded with candesartan cilexetil, were produced within the standard criteria of tablet production. The quality control analysis of the selected tablets, in this study, revealed satisfactory pharmaceutical properties (including safety and effectiveness) that comply within the limits of USP pharmacopeia.


Author(s):  
ANKITA KAPOOR ◽  
G. D. GUPTA

Objective: The present research work aims at describing the formulation, optimization and evaluation of ion activated ocular in-situ gel of gatifloxacin for treatment of bacterial conjunctivitis so as to overcome patient inconvenience, precorneal drug elimination, variation in efficacy, vision blurring and frequent instillation associated with conventional eye drops and ointments. Methods: In-situ gel was prepared using gellan gum as an ion activated phase transition polymer and HPMC K100M as release retardant. Gatifloxacin was characterized by spectrophotometry. Crystalline state of the drug was determined using X Ray Diffraction study. The developed formulation exhibited instantaneous gel formation in simulated lacrimal fluid (pH 7.4), which was further evaluated for its rheology, irritancy parameters, in vitro release, trans-corneal permeation and antimicrobial activity. Results: Gatifloxacin exhibited λmax 286 nm obeying Beer Lambert’s law and pH-dependent solubility at a pH range of 2 to 4. 0.6% gellan gum and 0.4% HPMC K100M were optimized in the formulation which exhibited a viscosity of 55 cps in sol form and 325 cps in gel form with pseudoplastic behavior and prolonged in vitro release. Permeation of formulation was 75.8% in 7 h with log P of drug 0.59. Developed isotonic and non-irritant formulation had a lower apparent permeability coefficient of 8.15 x 10-5 cm/sec as compared to marketed formulation. Conclusion: A Formulation can be viewed as an efficacious medicine by virtue of its higher zone of inhibition, ability to enhance precorneal residence time and consequently ocular bioavailability with lesser frequency of administration attributed to slow and prolonged diffusion of the drug from the polymeric solutions.


Polymers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1021 ◽  
Author(s):  
Taepin Junmahasathien ◽  
Pattaraporn Panraksa ◽  
Paytaai Protiarn ◽  
Doosadee Hormdee ◽  
Rajda Noisombut ◽  
...  

The objective of this study was to develop the metronidazole loaded high and low methoxyl pectin films (HM-G-MZ and LM-G-MZ) for the treatment of periodontal disease. The films were prepared by pectin 3% w/v, glycerin 40% w/v, and metronidazole 5% w/v. The developed films were characterized by scanning electron microscope and evaluated for thickness, weight variation, and elasticity. The developed films showing optimal mechanical properties were selected to evaluate radial swelling properties, in vitro release of metronidazole and the antimicrobial activity against Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans by the disc diffusion method. The results demonstrated that LM-MZ and HM-G-MZ films were colorless and yellowish color, respectively, with the film thickness around 0.36–0.38 mm. Furthermore, both films exhibited good elasticity with low puncture strength (1.63 ± 0.37 and 0.84 ± 0.03 N/mm2, respectively) and also showed slight increase in radial swelling, so that they could be easily inserted and fitted into the periodontal pocket during a clinical use. However, HM-G-MZ showed a decrease in radial swelling after 1 h due to the film erosion. The in vitro release study of LM-G-MZ showed a burst release that was initially followed by a slow release rate profile, capable to maintain the therapeutic level in periodontal pocket for seven days, whereas HM-G-MZ showed an immediate release profile. The cumulative percentage of metronidazole release from HM-G-MZ was less than LM-G-MZ during the first 5 min as metronidazole was in a crystalline form inside HM-G-MZ film. For antimicrobial activity test, both films showed the inhibitory effect against P. gingivalis and A. actinomycetemcomitans, and there was no difference in the inhibition zone between LM-G-MZ and HM-G-MZ. The present study showed, for the first time, that low methoxyl pectin film containing glycerin and metronidazole could be potentially considered as a promising clinical tool for the drug delivery via intra-periodontal pocket to target an oral disease that is associated with polymicrobial infection.


Author(s):  
Pamula Reddy Bhavanam ◽  
Shaik Abdul Rahaman ◽  
M Mohan Varma

Tamarind seed polysaccharide (TSP) micro sized mouth dissolving films were prepared to release the Amlodipine besylate drug for hypertension. TSP mouth dissolving films were prepared by solvent evaporation method which was further examined under in vitro studies. In vitro antimicrobial activities for all the mouth dissolving films were conducted by diffusion method. Form the in vitro release profile, the AML-TSP was completely showed rapid release of drug up to 98.1% than the thin films of other formulations respectively in the period of time of 10 min. The prepared AML-TSP mouth dissolving films were evaluated for drug content, weight variation, thickness, pH, folding endurance, In vitro drug release and stability studies. AML8 showed the highest drug release at the 10 min time point. The AML8 mouth dissolving film with higher amount of superdisintegrant CCS and SSG showed fastest onset of drug release.


Author(s):  
Rishikesh Gupta ◽  
Sk Prajapati ◽  
Snigdha Pattnaik ◽  
Peeyush Bhardwaj

ABSTRACTObjective: The purpose of this research was to formulate and evaluate floating microsphere of glipizide.Methods: Glipizide microsphere containing ethyl cellulose (EC) and hydroxyl propyl methyl cellulose (HPMC) were prepared by solvent evaporationmethod. Polymer to drug ratio affected characteristics of microspheres. Microspheres were discrete, spherical, and perforated form. The microspheresexhibited good floating property and achieved good gastric retention.Result: In vitro performance was evaluated by the usual pharmacopoeial and other tests such as drug polymer compatibility (Fourier transforminfrared scan), yield (%), micrometric properties such as tapped density (%). Compressibility particle size analysis (by optical microscopy), drugentrapment efficiency, surface topography (scanning electron microscope), and in vitro release study. On the basis of results, increasing the polymerratio increased the particle size (195.6±20.24 to 200.89±16.61), increased tapped density (maximum 0.29.60±0.00037 HGF4, batch), and decreased% compressibility (2.13±0.188). Drug loaded floating microspheres were found to be float more than 12 hrs on simulated gastric fluid (pH-1.2).Maximum drug entrapment was found in batch HGF3 (Drug:HPMC:EC) (1:1:3). Electron microscopy showed its perforated surface with hollowness.After 10 hrs, maximum release was found to be 78.0% (batch-GF1).Conclusion: The release study was performed in simulated gastric fluid with 0.02% tween80. The best release result was obtained at the ratio ofdrug: polymer (1:1).Keywords: Floating microspheres, Glipizide, Gastrorentensive system, In vitro release.


Sign in / Sign up

Export Citation Format

Share Document