Adsorbents for Removal of Hazardous Metals from waste water and natural water samples: A Review

Author(s):  
Kanhaya Lal ◽  
Garima Prajapat ◽  
Uma Rathore ◽  
Bhojak N.

Wide ranges of low cost adsorbents were used to remove hazardous metal in aqueous solution and wastewater. The low cost adsorbents were usually collected from agricultural waste, seafood waste, food waste, industrial by-product and soil. These adsorbents are readily available in a copious amount. Some of the natural adsorbents appeared as good heavy metal removal, while some were not and require further modifications and improvements to enhance the adsorption capacity. Currently, heavy metals exist in most of the industrial wastewaters and water supplies are among the most severe environmental contaminants. Numerous research works have been conducted in this field, this review includes few potential solution containing papers.

2020 ◽  
Vol 1010 ◽  
pp. 489-494
Author(s):  
Abdul Hafidz Yusoff ◽  
Rosmawani Mohammad ◽  
Mardawani Mohamad ◽  
Ahmad Ziad Sulaiman ◽  
Nurul Akmar Che Zaudin ◽  
...  

Conventional methods to remove heavy metals from polluted water are expensive and not environmentally friendly. Therefore, this study was carried out to investigate the potential of agricultural waste such as pineapple peel (Ananas Cosmos) as low-cost absorbent to remove heavy metals from synthetic polluted water. The results showed that Cd, Cr and Pb were effectively removed by the biosorbent at 12g of pineapple peels in 100 mL solution. The optimum contact time for maximum adsorption was found to be 90 minutes, while the optimum pH for the heavy metal’s adsorption was 9. It was demonstrated that with the increase of adsorbent dosage, the percent of heavy metals removal was also increased due to the increasing adsorption capacity of the adsorbent. In addition, Langmuir model show maximum adsorption capacity of Cd is 1.91 mg/g. As conclusions, our findings show that pineapple peel has potential to remove heavy metal from polluted water.


2021 ◽  
Author(s):  
Athar Hussain ◽  
Sangeeta Madan ◽  
Richa Madan

Adsorption processes are extensively used in wastewater treatment for heavy metal removal. The most widely used adsorbent is activated carbon giving the best of results but it’s high cost limits its use. It has a high cost of production and regeneration. As the world today faces a shortage of freshwater resources, it is inevitable to look for alternatives that lessen the burden on existing resources. Also, heavy metals are toxic even in trace concentrations, so an environmentally safe method of their removal necessitated the requirement of low cost adsorbents. Adsorption is a cost-effective technique and gained recognition due to its minimum waste disposal advantage. This chapter focuses on the process of adsorption and the types of adsorbent available today. It also encompasses the low-cost adsorbents ranging from agricultural waste to industrial waste explaining the adsorption reaction condition. The cost-effectiveness, technical applicability and easy availability of raw material with low negative impact on the system are the precursors in selecting the adsorbents. The novelty of the chapter lies in covering a wide range of adsorbents with their efficiency in removal of heavy metals from wastewater.


2020 ◽  
Vol 997 ◽  
pp. 113-120
Author(s):  
Hafizah Binti Naihi

The extensive use of heavy metals such as copper in various industries has discharged a large amount of the metals into the environment which is toxic at higher concentrations. The use of low-cost agricultural waste of biological origin such as tea waste may be an economic solution to this problem. Tea waste is among the potential material to be developed as an adsorbent for heavy metal ions. Tea waste contains cellulose and lignin which have been reported having an excellent metal binding capacity. This study aims to use tea waste for the removal of Cu2+ ions. The effect of variation in different parameters like initial concentration of Cu2+ ions in solution, adsorbent dosage and contact time were investigated using batch adsorption method. The adsorbent, tea waste was characterized using a compound microscope and FTIR spectroscopy. Experimental results showed that the maximum removal of the copper ion by tea waste at optimum condition (pH 7, 60 min. contact time, 0.8 g adsorbent dose and 0.7 M concentration) is 74%. The adsorbent prepared from tea waste is efficient and it can be conveniently employed as a low-cost alternative in the treatment of wastewater for heavy metal removal.


Author(s):  
Bingbing Qiu ◽  
Xuedong Tao ◽  
Hao Wang ◽  
Wenke Li ◽  
Xiang Ding ◽  
...  

2014 ◽  
Vol 625 ◽  
pp. 889-892 ◽  
Author(s):  
Safoura Daneshfozoun ◽  
Bawadi Abdullah ◽  
Mohd Azmuddin Abdullah

This study developed an effective and economical physical pretreatment of OPEFB to be used as biosorbent for the removal of heavy metal ions such as Cu+2, Zn+2and Pb2+. The effects of fibres sizes, metal ions concentration (100-1000 ppm), initial pH (4-10) and contact time (20-150 min) were investigated in batch system. Samples were characterized with Atomic Absorption Spectrometry (AAS), Transmission Electron Microscopy (TEM) and Fourier Transmission Infra-red Spectroscopy (FTIR). Results showed pH-dependence adsorption efficiency and increased adsorption with initial metal concentrations where more than 92% adsorption efficiency achieved. We have successfully developed an eco-friendly, low cost adsorbent without any chemical modification or excessive energy disposal.


2016 ◽  
Vol 7 (4) ◽  
pp. 387-419 ◽  
Author(s):  
Renu ◽  
Madhu Agarwal ◽  
K. Singh

Heavy metals are discharged into water from various industries. They can be toxic or carcinogenic in nature and can cause severe problems for humans and aquatic ecosystems. Thus, the removal of heavy metals from wastewater is a serious problem. The adsorption process is widely used for the removal of heavy metals from wastewater because of its low cost, availability and eco-friendly nature. Both commercial adsorbents and bioadsorbents are used for the removal of heavy metals from wastewater, with high removal capacity. This review article aims to compile scattered information on the different adsorbents that are used for heavy metal removal and to provide information on the commercially available and natural bioadsorbents used for removal of chromium, cadmium and copper, in particular.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Çiğdem Kıvılcımdan Moral ◽  
Merve Yıldız

Alginate is a biopolymer composed of mannuronic and guluronic acids. It is harvested from marine brown algae; however, alginate can also be synthesized by some bacterial species, namely,AzotobacterandPseudomonas. Use of pure carbohydrate sources for bacterial alginate production increases its cost and limits the chance of the polymer in the industrial market. In order to reduce the cost of bacterial alginate production, molasses, maltose, and starch were utilized as alternative low cost carbon sources in this study. Results were promising in the case of molasses with the maximum 4.67 g/L of alginate production. Alginates were rich in mannuronic acid during early fermentation independent of the carbon sources while the highest guluronic acid content was obtained as 68% in the case of maltose. The polymer was then combined with clinoptilolite, which is a natural zeolite, to remove copper from a synthetic wastewater. Alginate-clinoptilolite beads were efficiently adsorbed copper up to 131.6 mg Cu2+/g adsorbent at pH 4.5 according to the Langmuir isotherm model.


Author(s):  
E I Ugwu ◽  
O Tursunov ◽  
D Kodirov ◽  
L M Shaker ◽  
A A Al-Amiery ◽  
...  

2020 ◽  
Vol 14 (3) ◽  
pp. 384-395
Author(s):  
Juan Yin ◽  
Chao-Bing Deng ◽  
Hongxiang Zhu ◽  
Jianhua Xiong ◽  
Zhuo Sun

Sulfate reducing bacteria (SRB) are widely used to remove heavy metals because of their high efficiency. However, the metabolic processes of SRB require additional carbon sources, and the development of low-cost carbon sources has gradually attracted attention. The utilization of sugar byproduct resources, as the low-cost carbon sources, has great practical significance for environmentally sustainable development in Guangxi, China. This study aims to cultivate SRB with low-cost sugar byproducts, apply them to controlling a lead-polluted environment, and study the effects and mechanisms of controlling lead pollution. The research results show that the best culture effect of SBR can be obtained by mixing the filter mud and vinasse in a ratio of 1:1 to 3:1. SRB have average lead removal rates of more than 96.97% in solutions with different lead concentration of 10∼100 mg/L, and SRB have a higher tolerance to high concentrations of lead due to factors such as the organic substance composition of sugar byproducts and the porosity of filter mud. Scanning electron microscopy combined with energy dispersive spectrometry and X-ray diffraction analysis show that SRB mainly cause Pb2+ to form PbS precipitate through redox reactions to remove lead from the solution. Therefore, low-cost filters of a mud and vinasse mixture can be used as a medium for SRB and exhibit high heavy metal removal efficiency, thus providing a new utilization of filter mud and vinasse.


Sign in / Sign up

Export Citation Format

Share Document