Development, Characterization and Evaluation of Ritonavir Nanosuspension Treatment of Antiretroviral Therapy

Author(s):  
Shital V. Sonawane ◽  
Avish D. Maru ◽  
Mitesh P. Sonawane

Oral nanosuspension of ritonavir was prepared by antisolvent precipitation method using various polymers such as Eudragit RS100, Poloxamer 407, SLS and Methanol.The effect of eudragit RS100 and poloxamer 407 used stabilizer and SLS is surfactant was investigated on particle size and distribution, drug content, entrapment efficiency was observed. Ritonavir is having low solubility and low permeability drug belonging to class-IV according to BCS. Drug-excipient compatibility and amorphous nature of ritonavir drug is prepared nanosuspension was confirmed by FTIR, DSC and Motic microscope studies, respectively. The nanosuspension was further evaluated for drug content, saturation solubility study and entrapment efficiency. The average particle size of ritonavir nanaosuspensions formulas was observed from 0.006 µm to 0.017 µm. The studied in the solubility and dissolution rate there are the increase solubility and dissolution rate of ritonavir nanosuspension.

Author(s):  
Pankaj P Nerker ◽  
Hitendra Mahajan ◽  
Sagar Deore ◽  
Pradyumn Ige

Nanosuspensions provide convenient formulations for improving the bioavailability and drug delivery. The objective of the investigation was to develop stable nanosuspension formulation of ramipril, with minimum surfactant concentration that could improve its solubility, stability and oral bioavailability. Ramipril is a potent antihypertensive drug, which act by inhibiting the angiotensin-converting enzyme. Nanosuspension was developed by antisolvent precipitation followed by high-pressure homogenization using hydrophilic polymers such as HPMC E5, HPMC E15, PVP K30, PVP K25, and PVA. The resulting nanosuspension was transformed into dry powder by freeze-drying process. Among all five formulations a formulation was choosen on the basis of results obtained from comparative study between different polymers based nanosuspension formulation of ramipril. The nanosuspension prepared was then evaluated for particle size, polydispesivity index, zeta potential, entrapment efficiency, saturated solubility study, scanning electron microscopy, differential scanning colorometry, and X ray diffraction. The combination of soya lecithin and pluronic F-68 as stabilizers yield nanosuspension with the smallest average particle size. The formulation of ramipril based on HPMC E 15 (Formulation B) shown enhanced dissolution rate. In which more than 60% of the drug was dissolved in the first 20 min compared to less than 25% of the pure drug within the same time period. The increase in the in vitro dissolution rate, nano size may favourably affect bioavailability.


2020 ◽  
Vol 17 ◽  
Author(s):  
Mohammad Hossain Shariare ◽  
Tonmoy Kumar Mondal ◽  
Hani Alothaid ◽  
Md. Didaruzzaman Sohel ◽  
MD Wadud ◽  
...  

Aim: EPAS (evaporative precipitation into aqueous solution) was used in the current studies to prepare azithromycin nanosuspensions and investigate the physicochemical characteristics for the nanosuspension batches with the aim of enhancing the dissolution rate of the nanopreparation to improve bioavailability. Methods: EPAS method used in this study for preparing azithromycin nanosuspension was achieved through developing an in-house instrumentation method. Particle size distribution was measured using Zetasizer Nano S without sample dilution. Dissolved azithromycin nanosuspensions were also compared with raw azithromycin powder and commercially available products. Total drug content of nanosuspension batches were measured using an Ultra-Performance Liquid Chromatography (UPLC) system with Photodiode Array (PDA) detector while residual solvent was measured using gas chromatography (GC). Results: The average particle size of azithromycin nanosuspension was 447.2 nm and total drug content was measured to be 97.81% upon recovery. Dissolution study data showed significant increase in dissolution rate for nanosuspension batch when compared to raw azithromycin and commercial version (microsuspension). The residual solvent found for azithromycin nanosuspension is 0.000098023 mg/ mL or 98.023 ppb. Conclusion: EPAS was successfully used to prepare azithromycin nanoparticles that exhibited significantly enhanced dissolution rate. Further studies are required to scale up the process and determine long term stability of the nanoparticles.


Author(s):  
Mohammed Sabar Al-lami ◽  
Malath H. Oudah ◽  
Firas A. Rahi

This study was carried out to prepare and characterize domperidone nanoparticles to enhance solubility and the release rate. Domperidone is practically insoluble in water and has low and an erratic bioavailability range from 13%-17%. The domperidone nanoparticles were prepared by solvent/antisolvent precipitation method at different polymer:drug ratios of 1:1 and 2:1 using different polymers and grades of poly vinyl pyrolidone, hydroxy propyl methyl cellulose and sodium carboxymethyl cellulose as stabilizers. The effect of polymer type, ratio of polymer:drug, solvent:antisolvent ratio, stirring rate and stirring time on the particle size, were investigated and found to have a significant (p? 0.05) effect on particle size. The best formula was obtained with lowest average particle size of 84.05. This formula was studied for compatibility by FTIR and DSC, surface morphology by FESEM and crystalline state by XRPD. Then domperidone nanoparticles were formulated into a simple capsule dosage form in order to study of the in vitro release of drug from nanoparticles in comparison raw drug and mixture of polymer:drug ratios of 2:1. The release of domperidone from best formula was highly improved with a significant (p? 0.05) increase.


Author(s):  
Amruta Papdiwal ◽  
Kishor Sagar ◽  
Vishal Pande

Poor water solubility and slow dissolution rate are major issues for the majority of upcoming and existing biologically active pharmaceutical compounds. Nateglinide is Biopharmaceutical Classification System Class-II drug that has low solubility and high permeability. The purpose of the present study was to improve the solubility and dissolution rate of Nateglinide by the preparation of nanosuspension by the nanoprecipitation technique. Nateglinide nanosuspension was evaluated for its particle size, in vitro dissolution study, and characterized by differential scanning calorimetry and scanning electron microscopy. The optimized formulation showed an average particle size of 207 nm and zeta potential of -25.8 mV. The rate of dissolution of the optimized nanosuspension was enhanced by 83% in 50 min relative to micronized suspension of nateglinide (37% in 50 min). This improvement was mainly due to the formulation of nanosized particles of Nateglinide. Stability study revealed that nanosuspension was more stable at room temperature and refrigerator condition with no significant change in particle size distribution. These results indicate that the nateglinide loaded nanosuspension may significantly improve in vitro dissolution rate and thereby possibly enhance the onset of therapeutic effect.


Author(s):  
Mohini E. Shinde ◽  
Mitesh P. Sonawane ◽  
Avish D. Maru

Solubility is an essential factor for drug effectiveness. Simvastatin is poorly water-soluble drug and its bioavailability is very low. Nanosuspension is one of those approach which can tremendously enhance the effective surface area of drug particles by reducing the particle size and there by increases the rate of dissolution and hence improve bioavailability. The main purpose of the present investigation was to increase the saturation solubility of simvastatin by preparation of nanosuspension. Nanosuspension of simvastatin were prepared by nanoprecipitation method using hydroxypropyl cellulose as stabilizer and sodium lauryl sulphate as surfactant. Prepared nanosuspension was evaluated for its particle size, total drug content, entrapment efficiency and saturation solubility study. On the basis of the evaluation, the best batch F8 formulation demonstrated highest drug content and entrapment efficiency with average particle size of 0.004µm. The saturation solubility studies show the solubility of the prepared nanosuspension has increased as compared to the pure drug due to the particle size reduction. The nanosuspension of simvastatin could be successfully prepared and can be concluded that the nanosuspension formulation is a promising approach to enhance the solubility. The nanoprecipitation is a simple and effective method to produce nano sized particles of poorly water-soluble drugs with enhance solubility.


Author(s):  
Sanaa El Gizaway ◽  
Maha Fadel ◽  
Basma Mourad ◽  
Fatma El-zahraa Abd Elnaby

Objective: The main aim of this study was to design and characterise betamethasone di-propionate loaded transfersomes (BD-T); as a topical formulation for the treatment of localized plaque psoriasis.Methods: A full factorial design (23) was applied to study the effects of three independent variables: drug content, type of surfactants and surfactant contents on particle size (PS), entrapment efficiency (EE %), zeta potential (ZP), polydispersity index (PI) and drug release profiles. The optimized BD-T was formulated as a hydrogel using 5% sodium carboxymethyl cellulose. The gel was characterized for viscosity, drug content, in vitro drug release and stability. A comparative clinical study was performed on 20 patients with psoriasis to investigate the effect of BD-T gel and the marketed betamethasone dipropionate (BD) cream.Results: The optimized BD-T formulation containing 50 mg betamethasone dipropionate (BD) and 5 mg tween 80 showed spherical unilamellar vesicles with an average particle size of 242.80, % EE of 90.19%, ZP of-15.00 mV, PI of 0.407 and K0 of 4.290 mg/hr. The formulation showed good stability at 4 °C and 25 °C for 6 mo. The results revealed significant clinical improvement and a significant increase in safety and tolerability with BD-T gel compared with BD cream.Conclusion: As a conclusion, BD-T was found to be more effective, safe and tolerable for the treatment of psoriasis compared with the marketed product.


2017 ◽  
Vol 6 (6) ◽  
pp. 517-526 ◽  
Author(s):  
Permender Rathee ◽  
Anjoo Kamboj ◽  
Shabir Sidhu

AbstractBackground:Piperine helps in the improvement of bioavailability through pharmacokinetic interaction by modulating metabolism when administered with other drugs. Nisoldipine is a substrate for cytochrome P4503A4 enzymes. The study was undertaken to assess the influence of piperine on the pharmacokinetics and pharmacodynamics of nisoldipine nanoparticles in rats.Methods:Optimization studies of nanoparticles were performed using Taguchi L9 orthogonal array, and the nanoparticles were formulated by the precipitation method. The influence of piperine and nanoparticles was evaluated by means of in vivo kinetic and dynamic studies by oral administration in rats.Results:The entrapment efficiency, drug loading, ζ potential, and average particle size of optimized nisoldipine-piperine nanoparticles was 89.77±1.06%, 13.6±0.56%, −26.5 mV, and 132±7.21 nm, respectively. The in vitro release in 0.1 n HCl and 6.8 pH phosphate buffer was 96.9±0.48% and 98.3±0.26%, respectively. Pharmacokinetic studies showed a 4.9-fold increase in oral bioavailability and a >28.376±1.32% reduction in systemic blood pressure by using nanoparticles as compared to control (nisoldipine suspension) in Wistar rats.Conclusion:The results revealed that piperine being an inhibitor of cytochrome P4503A4 enzymes enhanced the bioavailability of nisoldipine by 4.9-fold in nanoparticles.


2015 ◽  
Vol 752-753 ◽  
pp. 148-153
Author(s):  
M.M. Nassar ◽  
Taha Ebrahiem Farrag ◽  
M.S. Mahmoud ◽  
Sayed Abdelmonem

Calcium carbonate nanoparticles and nanorods were synthesized by precipitation from saturated sodium carbonate and calcium nitrate aqueous solutions through co precipitation method. A new rout of synthesis was done by both using pulsed mixing method and controlling the addition of calcium nitrate. The effect of the agitation speed, and the temperature on particle size and morphology were investigated. Particles were characterized using X-ray Microanalysis, X-ray analysis (XRD) and scanning electron microscopy (SEM). The results indicated that increasing the mixer rotation speed from 3425 to 15900 (rpm) decreases the average particle size to 64±7 nm. A rapid nucleation then aggregation induced by excessive shear force phenomena could explain this observation. Moreover, by increasing the reaction temperature, the products were converted from nanoparticle to nanorods. The maximum attainable aspect ratio was 6.23 at temperature of 75°C and rotation speed of 3425. Generally, temperature raise promoted a significant homoepitaxial growth in one direction toward the formation of calcite nanorods. Overall, this study can open new avenues to control the morphology of the calcium carbonate nanostructures.


2013 ◽  
Vol 690-693 ◽  
pp. 454-457
Author(s):  
Hong Bo Li ◽  
Shu Yan Wu ◽  
Jing Wang ◽  
Chun Jie Li

Columnar crystaldendriteequiaxial dendritescolumnar crystalNanosized powder was synthesized by direct-reactive precipitation process using a stoichiometrical mixture of TiCl4, BaCl2 as the reactants while NaOH as precipitant. Under the ratio of Ba to Ti is 1.02, PH=13, three reaction temperature of 70°C, 80°C and 90°C were conducted respectively. Morphology and phase structure of powder were investigated, and the influence of reaction temperature on powder morphology was discussed. The result indicates that synthesized powder is single cubic BaTiO3 and contains no impurities. BaTiO3 powders generally show spherical, and average particle size decreases with increasing reaction temperature. When reaction temperature is 80°C, BaTiO3 powder has best uniformity and dispersivity with the diameter of 80-100nm. The influence of reaction temperature on powder particle size can be attributed to the corporate contribution of nucleation and growth rate. Polyglycol as surface active agent has a significant effect in restraining agglomeration.


2013 ◽  
Vol 32 (5) ◽  
pp. 511-515 ◽  
Author(s):  
Xiao Guo Cao ◽  
Jia Wang ◽  
Qi Bai Wu ◽  
Hai Yan Zhang

AbstractYb:YAG transparent ceramic nano-powder was prepared by chemical co-precipitation method, with ammonium bicarbonate as the precipitant and polyethylene glycol as surfactant. The addition of polyethylene glycol can reduce the agglomeration and particle size of the prepared Yb:YAG powder. The morphology, thermal stability and phase structure of Yb:YAG nano-powder were charactered by scanning electron microscopy (SEM), thermogravimetry and differential thermal analysis (TG-DTA), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy. The results show that well-crystallized nano-powder was obtained by calcining the precursors at 900 °C for 3 h. The average particle size of Yb:YAG powder is about 100–200 nm. When the volume amount of polyethylene glycol is 2.0%, well-dispersed Yb:YAG powder with spherical particles of 100 nm diameter was obtained.


Sign in / Sign up

Export Citation Format

Share Document