scholarly journals An Assessment of the Bivalve Perna viridis, as an Indicator of Heavy Metal Contamination in Paradise Point of Karachi, Pakistan

2016 ◽  
Vol 59 (3) ◽  
pp. 164-171
Author(s):  
Rashida Qari ◽  
Olufemi Ajiboye ◽  
Saima Imran ◽  
Abdul Rahim Afridi

The edible bivalves Perna viridis (green mussel), (n = 100) were analysed for their total Hg,Pb, Cu, Ni, Zn, Co, Fe, Cr, Cd, and Mn concentrations to indicate heavy metal contamination in ParadisePoint of Karachi coast using atomic absorption spectrophotometer. There are large seasonal variations inthe metal concentrations of Mn (0.025-0.67 µg/g), Fe (0.055-7.740 µg/g), Ni (0.004-0.52 µg/g), Hg (0.0001-0.004 µg/g), Zn (0.04-3.32 µg/g), Cu (0.008-1.66 µg/g), Pb (0.022-2.43 µg/g), Co (0.01-0.044 µg/g), Cd(0.04-0.88 µg/g) and Cr (0.13-1.20 µg/g) recorded in bodies/soft tissues of P. viridis obtained in the samplesof the year 1993 and 2012 at the Paradise Point of Karachi coast. The results of heavy metals are in thefollowing descending order of concentration in the samples collected in the year 1993: Fe>Cr>Zn>Mn>Pb>Cd>Cu>Ni>Co>Hg, while Fe>Zn>Pb>Cu>Cr>Cd>Mn>Ni>Co>Hg order was recorded in samplescollected in the year 2012. The high accumulation of metals was found mostly in the samples collectedin the year 2012 when compared with the samples of the year 1993. This is an indication that the areaunder study showed signs of being exposed to significant levels of heavy metal pollution due to directdischarge of industrial and domestic wastes along the coast. The concentrations of these heavy metals werelower than the permissible limits for human consumption. However, if this pollution persists, it can proveto be very detrimental in future.

2018 ◽  
Vol 4 (2) ◽  
pp. 244-258
Author(s):  
Immaculate Jeyasanta K ◽  
Sheeba Wilson ◽  
Narmatha Sathish ◽  
Jamila Patterson

Samples of the green mussel, Perna viridis, the brown mussel Perna perna and the parrot mussel were collected from Kadiyapattinam of Kanyakumari coast and their biochemical composition and the levels of heavy metal contamination were analyzed. The results of this study showed that the biochemical composition of the mussels did not very much. The specimens of all the three species of mussels were found to be good aquatic invertebrates for human consumption. P. viridis contained higher proportion of protein than Perna perna and the parrot mussel. Perna perna and the parrot mussel contained more lipid, ash, carbohydrate, and fibre; and their caloric values were also more than that of Perna viridis. Perna perna had the highest moisture content (78.21%) followed by the parrotmussel (19.47%) and Perna viridis (20.30%). Concentrations of the heavy metals (Cd, Cu, Pb, Cr, As, Ni and Se) in the edible portions of the samples were within the values recommended by the WHO. Mercury was not detected and so these mussels are safe for the consumers. The order of concentrations of minerals found in the mussel samples was: K > Na > P > Ca > Mg > Fe > Zn > Mn. Potassium content was more than the other elements. It was evident from the study that in the soft tissue of all Perna species the concentration of essential minerals was higher than the nonessential metals. Kadiyapattinam mussels are a rich source not only of protein but also of all the other micro and macro minerals. The soft tissues of all the mussels had low levels of heavy metal concentration, and this indicates a comparatively lower heavy metal contamination of Kadiyapattinam coast. Mussels are also a rich source of nutritional components and could be used as human diet in place of other fish so as to reduce the pressure on sea foods.


2020 ◽  
Vol 2 (2) ◽  
pp. 40-45
Author(s):  
A. A. Istri Mirah Dharmadewi

This research was conducted to determine the content of heavy metals lead (Pb) and  Cadmium (Cd) in green shells circulating in the kreneng market. Samples of green shells were taken from the kreneng market, Bali. Then analysis of the content of lead (Pb) and Cadmium (Cd) in the Analytical Laboratory of Udayana University. Samples of green mussels (Perna viridis L.) Were opened from the shell to take the meat. Furthermore, the sample is mashed by chopping and pounding and put into erlenmeyer. Each sample was given 3 repetitions using the factorial pattern RAL. Then with a wet ashing process (wet destruction). The results showed that the heavy metal content of lead and cadmium in green mussels (Perna viridis L.) Exceeded the maximum limit of heavy metal contamination. The heavy metal content of lead (Pb) shellfish taken at the Kreneng Market is 29.595 mg / kg while the heavy metal content of cadmium (Cd) taken at the Kreneng market is 3.41 mg / kg the result of the heavy metal content analyzed exceeds the predetermined by the Food and Drug Supervisory Agency (BPOM).


Author(s):  
Sangeetha Annam ◽  
Anshu Singla

Abstract: Soil is a major and important natural resource, which not only supports human life but also furnish commodities for ecological and economic growth. Ecological risk has posed a serious threat to the ecosystem by the degradation of soil. The high-stress level of heavy metals like chromium, copper, cadmium, etc. produce ecological risks which include: decrease in the fertility of the soil; reduction in crop yield & degradation of metabolism of living beings, and hence ecological health. The ecological risk associated, demands the assessment of heavy metal stress levels in soils. As the rate of stress level of heavy metals is exponentially increasing in recent times, it is apparent to assess or predict heavy metal contamination in soil. The assessment will help the concerned authorities to take corrective as well as preventive measures to enhance the ecological and hence economic growth. This study reviews the efficient assessment models to predict soil heavy metal contamination.


Author(s):  
Made Rahayu Kusumadewi ◽  
I Wayan Budiarsa Suyasa ◽  
I Ketut Berata

Tukad Badung River is one of the potential contamination of heavy metal sare very highin the city of Denpasar. Tilapia (Oreochromis mossambicus) isa commonspecies of fish found in the river and became the object of fishing by the public. The fish is usually consume das a food ingredient forever yangler. Fish can be used as bio-indicators of chemical contamination in the aquatic environment. Determination of heavy metal bioconcentration and analysis of liver histopathology gills organs and muscles is performed to determine the content of heavy metals Pb, Cd, and Cr+6, and the influence of heavy metal exposure to changes in organ histopathology Tilapia that live in Tukad Badung. In this observational study examined the levels of heavy metal contamination include Pb, Cd and Cr+6 in Tilapia meat with AAS method (Atomic Absorption Spectrofotometric), and observe the histopathological changes in organ preparations gills, liver, and muscle were stained with HE staining (hematoxylin eosin). Low Pb content of the fish that live in Tukad Badung 0.8385 mg/kg and high of 20.2600 mg/kg. The content of heavy metals Pb is above the quality standards specified in ISO 7378 : 2009 in the amount of 0.3 mg / kg. The content of Cr+6 low of 1.1402 mg / kg and the highest Cr+6 is 6.2214 mg / kg. The content of Cr+6 is above the quality standards established in the FAO Fish Circular 764 is equal to 1.0 mg / kg. In fish with Pb bioconcentration of 0.8385 mg / kg and Cr+6 of 1.1402 mg / kg was found that histopathological changes gill hyperplasia and fusion, the liver was found degeneration, necrosis, and fibrosis, and in muscle atrophy found. Histopathologicalchangessuch asedema and necrosis ofthe liveris foundin fishwith Pb bioconcentration of 4.5225mg/kg and Cr+6 amounted to2.5163mg/kg. Bio concentration of heavy metal contamination of lead (Pb) and hexavalent chromium (Cr+6) on Tilapia ( Oreochromis mossambicus ) who lives in Tukad Badung river waters exceed the applicable standard. Histopathological changes occur in organs gills, liver, and muscle as a result of exposure to heavy metals lead and hexavalent chromium. Advised the people not to eat Tilapia that live in Tukad Badung


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3348
Author(s):  
Min Tan ◽  
Kun Wang ◽  
Zhou Xu ◽  
Hanghe Li ◽  
Junfeng Qu

Heavy metals accumulate in high water table coal mining subsidence ponds, resulting in heavy metal enrichment and destruction of the ecological environment. In this study, subsidence ponds with different resource reutilization methods were used as study subjects, and non-remediated subsidence ponds were collectively used as the control region to analyze the heavy metal distributions in water bodies, sediment, and vegetation. The results revealed the arsenic content in the water bodies slightly exceeded Class III of China’s Environmental Quality Standards for Surface Water. The lead content in water inlet vegetation of the control region and the Anguo wetland severely exceeded limits. Pearson’s correlation, PCA, and HCA analysis results indicated that the heavy metals at the study site could be divided into two categories: Category 1 is the most prevalent in aquaculture pond B and mainly originate from aquaculture. Category 2 predominates in control region D and mainly originates from atmospheric deposition, coal mining, and leaching. In general, the degree of heavy metal contamination in the Anguo wetland, aquaculture pond, and fishery–solar hybrid project regions is lower than that in the control region. Therefore, these models should be considered during resource reutilization of subsidence ponds based on the actual conditions.


Author(s):  
Diana FLORESCU ◽  
Andreea IORDACHE ◽  
Claudia SANDRU ◽  
Elena HORJ ◽  
Roxana IONETE ◽  
...  

As a result of accidental spills or leaks, industrial wastes may enter in soil and in streams. Some of the contaminants may not be completely removed by treatment processes; therefore, they could become a problem for these sources. The use of synthetic products (e.g. pesticides, paints, batteries, industrial waste, and land application of industrial or domestic sludge) can result in heavy metal contamination of soils.


2020 ◽  
Vol 18 (1) ◽  
pp. 99-116
Author(s):  
JR Xavier ◽  
V Mythri ◽  
R Nagaraj ◽  
VCP Ramakrishna ◽  
PE Patki ◽  
...  

Vegetables are defined as edible plant parts generally consumed raw or cooked with a main dish, in a mixed dish, as an appetizer or as a salad. Food safety aspects related to microbial quality (total plate count, yeast and mold and food borne pathogens) and toxic residue (heavy metals) and mineral content were investigated for vegetables such as green leafy vegetable, salad vegetables, sprouts, brinjal, green chilies and French beans collected from organic and conventional outlets from Mysore region, Karnataka, India. Microbial analysis was carried out using standard procedures and mminerals (Ca, K, Fe, Cu, Mg, Mn and Zn) and heavy metals (Cd and Pb) were determined. Significant variations (p>0.05) were observed for microbial quality among organic and conventional vegetables. Mineral and vitamin C content were also significantly higher (p>0.01) in organic samples. Heavy metal contamination for lead and cadmium tested positive for conventional samples while organic samples tested negative. The variables that contributed most for the variability were heavy metal contamination, mineral and vitamin C content. Organically grown vegetables were free from heavy metals and safe for consumption, as well as they are rich in mineral and vitamin C content in comparison to conventional samples. SAARC J. Agri., 18(1): 99-116 (2020)


2017 ◽  
Vol 3 (01) ◽  
pp. 25-31 ◽  
Author(s):  
Charu Gangwar ◽  
Aprajita Singh ◽  
Raina Pal ◽  
Atul Kumar ◽  
Saloni Sharma ◽  
...  

E-waste is a popular name given to those electronic products nearing the end of their useful life which has become a major source of heavy metal contamination in soil and hence, became the global concern. Various samples of soil were collected from different sites and were determined for heavy metal analysis by the ICP-AAS after the digestion process. The main source of contamination is illegal e-waste recycling activities such as burning of PCB's acid baths etc. Different soil indices like contamination factor, I-geo, pollution load index, were calculated to determine the quality of the soil. Results indicate that e-waste recycling and industrial area are strongly contaminated by the heavy metals. Physiological analysis of soil revealed that e-waste processing and industrial activities decrease the soil pH and organic matter while enhancing the electrical conductivity of soil. The exceedance of metal contamination imposed negative impact to the soil environment and human health.


Author(s):  
Muhammad Murtaza Qureshi ◽  
Mohammad Amin Qureshi ◽  
Muhammad Saeed Qureshi ◽  
Afzal Shah

This study was aimed to assess the severity of heavy metal contamination in eastern coastal area of Pakistan. Agriculture lands near district Badin coastal area found contaminated due to mega surface canal drain network, carrying untreated industrial and municipal effluents along with pumped saline water. Thirty-two random soil samples were collected from different coastal areas. Arc Geographic Information System was used for spatial mapping. Soil samples from coastal areas of Badin contain average concentrations of heavy metals (mg/kg) as Hg 0.247±0.207, Ni 2.622±1.107,Zn 3.121±0.929, Cu 0.059±0.066, Fe 70.447±1.163, Mn7.062±1.251, Co 0.0167±0.033,Cr0.799±0.718.


2018 ◽  

<p>The objective of the study is to determine accumulation and translocation of heavy metals from soil to paddy straw irrigated with urban sewage wastewater in peri-urban region of Girudhumal subbasin area in Madurai. The soil samples were collected in seven locations irrigated with treated and untreated wastewater and analyzed for physical properties like pH, EC, bulk density, soil type, major (N,P,K) and micronutrients (Fe, Mn, Cu, Zn) and heavy metals Ni, Cd, Pb. SEM analysis showed that soil structure is significantly influenced by wastewater irrigation. It confirms that the wastewater irrigation disturbs soil structure and affecting the plant growth in long run.&nbsp; Pb content was higher than the prescribed safe limits in S5 and S6 location, similarly, Ni also was higher than the safe limit in all the locations. Pollution Load Index values are in the range of 0.08-0.56 for all sites, and it indicated that chance of heavy metal contamination is less. The EF values show moderate enrichment to Ni and Zn, Significant enrichment for Cd and Cu, Extremely high for Pb and deficiency for Mn. All these results confirmed that there is no immediate risk of heavy metal pollution, however with respect to Pb and Ni the plant tissues are showing higher values. The transfer factor for heavy metals from soil to paddy straw is less than 0.5 for Cd and for others is more than 0.5 indicated greater chances for heavy metal contamination.</p>


Sign in / Sign up

Export Citation Format

Share Document