scholarly journals The impact of nitrogen fertilizer injection on kernel yield and yield formation of maize

2014 ◽  
Vol 60 (No. 1) ◽  
pp. 1-7
Author(s):  
K. Kubešová ◽  
J. Balík ◽  
O. Sedlář ◽  
L. Peklová

In field experiments over three vegetation periods (2010–2012) we studied impact of the CULTAN (controlled uptake long term ammonium nutrition) method on yield and yield parameters of kernel maize. The field experiments were conducted at three sites with different soil-climatic conditions. CULTAN treatments were fertilized once with the total amount of nitrogen using an injection machine (at the canopy height of 20 cm) and compared to conventional fertilization with calcium ammonium nitrate application at pre-sowing preparations. In all treatments the amount of nitrogen was the same, 140 kg N/ha. In 2010 at Humpolec site, CULTAN urea ammonium nitrate + inhibitor of nitrification treatment gave by 20.5% higher number of ears compared to CULTAN urea ammonium nitrate treatment. In 2011 at Ivanovice all CULTAN treatments reached statistically significantly higher number of kernels per ear. The higher 1000 kernel weight at CULTAN treatments was observed in 2012 at the Ivanovice site; a statistically significant difference between conventional and CULTAN urea ammonium nitrate + inhibitor of nitrification treatment was observed. Fertilization of maize with nitrogen using the CULTAN method under the conditions of the Czech Republic provides the same yield certainty as the conventional surface application and the CULTAN method of fertilization increases the yield certainty at delayed sowing. Harvest index was statistically significantly influenced by year, fertilization treatment and site.

Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1179
Author(s):  
Darlena Caroline da Cruz Corrêa ◽  
Abmael da Silva Cardoso ◽  
Mariane Rodrigues Ferreira ◽  
Débora Siniscalchi ◽  
Pedro Henrique de Almeida Gonçalves ◽  
...  

The reduction in ammonia (NH3) losses from volatilization has significant implications in forage production. The objective of this study was to evaluate the impact of N fertilizers (urea, ammonium nitrate, and ammonium sulfate) and four doses (0, 90, 180 and 270 kg N ha−1) on N losses by NH3 volatilization, accumulation, and forage chemical composition of Urochloa brizantha cv Marandu. Two field experiments were conducted to measure NH3 losses using semi-open chambers. The forage accumulation and chemical composition were evaluated in the third experiment; the response variables included forage accumulation, crude protein (CP), and neutral detergent fiber (NDF). Compared to urea, ammonium nitrate and ammonium sulfate reduced NH3 losses by 84% and 87% and increased total forage accumulation by 14% and 23%, respectively. Forage accumulation rate and CP increased linearly with the N levels, while NDF contents decreased linearly with the N levels. In both experiments, NH3 losses and forage characteristics were different according to the rainfall pattern and temperature variations. Our results indicate that the use of nitric and ammoniacal fertilizers and the application of fertilizer in the rainy season constitute an efficient fertilizer management strategy to increase forage yield and decrease losses from volatilization of NH3.


Author(s):  
M.D. Craighead ◽  
J.A. Hayward ◽  
A.M. Howie

Since 1994 Ravensdown have carried out a series of pastoral trials in South Canterbury, aimed at looking at the relative effectiveness of different forms of nitrogen in the spring. These trials showed that in general those N products containing some nitrate-N (i.e., calcium ammonium nitrate - CAN, and ammonium sulphate nitrate - ASN) could be more effective than urea and ammonium sulphate when soil temperatures were low. However, responses were inconsistent because of spring climatic conditions. In 1994 and 1996 CAN produced the most dry matter but in 1995, responses to the form of N were less clear. Responses to nitrate-N were generally best when spring soil temperatures were 3-5°C at the time of application. The magnitude of N responses varied with the rate applied, and the type of pasture to which N was applied. Responses generally lasted the equivalent of two to three grazings. Keywords: ammonium-N, ammonium sulphate, ammonium sulphate nitrate, calcium ammonium nitrate, nitrate fertilisers, nitrate-N, urea


2016 ◽  
Vol 154 (8) ◽  
pp. 1453-1462 ◽  
Author(s):  
M. SCHRAML ◽  
R. GUTSER ◽  
H. MAIER ◽  
U. SCHMIDHALTER

SUMMARYFollowing the surface application of granulated urea to grassland, high ammonia (NH3) losses of up to 30% have been reported. The addition of a urease inhibitor (UI) to urea granules could be a way to abate these losses. Field experiments were conducted at two intensive grassland sites in 2007 and 2008 to evaluate the potential of the new UI N-(2-nitrophenyl) phosphoric triamide (2-NPT; concentrations of 0·75, 1·0 and 1·5 g N/kg) to reduce NH3 emissions resulting from the application of granulated urea. Ammonia losses were continuously measured on plots fertilized with urea, urea + 2-NPT, calcium ammonium nitrate and a control (0N). The measurements were made with a dynamic chamber system. All measurement periods were started after a period of precipitation with a following rainless period being forecasted. Results over measurement periods of 10 days following fertilization are presented. Ammonia losses following the application of granulated urea varied between 4·6 and 11·8 kg N/ha, corresponding to 4·2 up to 14·0% of the applied nitrogen. The addition of 2-NPT to urea granules at three concentrations significantly reduced NH3 losses by 69–100%. Comparable losses of NH3 were observed for urea containing the UI 2-NPT as well as calcium ammonium nitrate, and were not significantly different from the control treatment. No relationships between losses, meteorological factors and soil moisture were observed. The addition of the UI 2-NPT to urea granules applied on grassland effectively reduced NH3 losses.


1997 ◽  
Vol 11 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Robert N. Stougaard

Field experiments were conducted at Kalispell, MT, to determine the optimum adjuvant combination for wild oat control in peppermint with quizalofop. Quizalofop was applied to four- and eight-leaf wild oat plants at 20 and 50 g ai/ha with either a nonionic surfactant (NIS) or methylated seed oil (MSO) alone or in combination with 28% urea ammonium nitrate (UAN) liquid fertilizer. Differences among adjuvants were most apparent when quizalofop was applied at the lowest rate. MSO was more effective than NIS for enhancing quizalofop activity. Quizalofop efficacy with both adjuvants increased when applied with UAN. Greater than 90% wild oat control was obtained with the lowest rate when applied with MSO plus UAN to four-leaf wild oat plants. These results demonstrate the potential to improve the consistency of weed control as well as reduce postemergence herbicide rates when applied with the proper adjuvant combination.


2020 ◽  
Vol 63 (1) ◽  
pp. 62-66
Author(s):  
Imdad Ali Mahmood ◽  
Muhammad Arshad Ullah ◽  
Muhammad Riaz Chatha ◽  
Muhammad Suhaib

A field study was conducted to investigate the effect of different N fertilizer sources (urea, nitrophos, ammonium sulphate and calcium ammonium nitrate) on the productivity of wheat (var. Inqlab) in naturally salt-affected soil (pH = 8.79; ECe = 6.46; Sandy loam). A significant difference was observed in wheat grain and straw yield with the application of different N sources. Maximum wheat grain and straw yields (3203 and 3489 kg/ha, respectively) were recorded when ammonium sulphate was applied. Various N sources followed the order: Ammonium sulphate > urea > calcium ammonium nitrate and/or nitrophos. Comparatively higher N uptake by wheat (117.26 and 114.00 kg/ha) was observed with Ammonium sulphate and urea application, respectively. Similarly, maximum N recovery was observed with both these N sources followed by nitrophos, and calcium ammonium nitrate. However, the highest physiological efficiency (14.29 kg/kg fertilizer applied) was noted with the application of ammonium sulphate.  


2008 ◽  
Vol 88 (5) ◽  
pp. 907-919 ◽  
Author(s):  
G. P. Lafond ◽  
S. A. Brandt ◽  
B. Irvine ◽  
W. E. May ◽  
C. B. Holzapfel

Nitrogen is the most limiting nutrient in crop production on the Canadian prairies. There is great interest in managing it more effectively for environmental and economic reasons. Our objective was to study the effectiveness of using different proportions of recommended nitrogen rates at seeding with the balance at different crop growth stages to minimize the risks of potential yield losses from in-crop nitrogen applications in spring wheat and canola. The field trials with wheat were conducted at three locations from 2003 to 2006 and at two locations for canola from 2004 to 2006. The treatments consisted of applying 100, 67, 50, 33 or 0% of the targeted N rate at seeding using urea in mid-row bands and the balance in-crop at the 1.5, 3.5 or 5.5 leaf stages in spring wheat and at the 5-6 leaf stage, bolting or start of flowering stage in canola using surface dribble band of liquid urea-ammonium nitrate. With spring wheat, applying 33% of the recommended N rate at seeding with the balance in-crop resulted in similar yields to when all the nitrogen was applied at seeding in one study while, in the other, some yield loss was observed at the 3.5 leaf stage. This indicates that a higher proportion, such as 50%, would be more appropriate. With canola, a minimum of 50% of the recommended nitrogen rate was required at seeding and the in-crop application at or before the bolting phase to give yields equivalent to when all fertilizer was applied at seeding. Consequently, applying 50% or more of the recommended N at seeding enhances the opportunity for in-crop applications of nitrogen in spring wheat and canola to better match the soil and climatic conditions. Key words: Canola, wheat, split applications, liquid urea-ammonium nitrate, grain yield, grain protein


1986 ◽  
Vol 66 (4) ◽  
pp. 615-621 ◽  
Author(s):  
R. M. N. KUCEY

Urea, ammonium nitrate, and anhydrous ammonia were compared as sources of N for barley in southern Alberta in spring and fall, using broadcast and banded applications. No significant difference in effect was found among fertilizers when they were banded at a depth of 15 cm. When broadcast, the granular forms of N were not as effective as equivalent rates and forms added in a band. Spring-applied N was more effective than fall-applied N in three of the eight comparisons made. N uptake accounted for between 18 and 54% of the added N in the 2 yr of the experiment. Fertilizer additions had no effect on barley yield when water was limited over the growing season. Key words: Nitrogen, urea, ammonium nitrate, anhydrous ammonia, yield response


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 514c-514
Author(s):  
K.G. Weis ◽  
S.M. Southwick ◽  
J.T. Yeager ◽  
M.E. Rupert ◽  
W.W. Coates

Continuing trials (1995–present) advanced budbreak and flowering with a surfactant and calcium ammonium nitrate (CAN17), and in 1997, hydrogen cyanamide (HCN). Chilling in 1996–1997 was marginal in San Joaquin County (SJ, 830 chill hours, 18 Feb.), and low in San Benito County (SB, 612 chill hours, 21 Feb.). When we used the “45 °F” chilling model, the most effective surfactant + nitrate treatment timings for both locations were similar by chill accumulation (≈72 % to 82% of required chilling for `Bing' = 850–880 chill hours), although the two locations differed in total chill accumulation and date of effective treatment. Full bloom (FB) was advanced by 1 week with 4% HCN in SJ, followed by 2% surfactant + 25% calcium ammonium nitrate applied on 21 Jan. (700 chill hours), compared to the untreated control. Bloom duration (full bloom to petal fall) was compressed most by surfactant and CAN17. Bloom in SB was also most advanced by HCN, followed by 2% surfactant + 25% CAN17 applied on 21 Feb. (612 chill hours). Fruit set was improved in SB by surfactant and CAN17 in mid-February; set was too low, however, for real impact. In SJ and SB, HCN advanced fruit maturity most, followed by surfactant and CAN17 applied 21 Jan.; these fruits were softer. We believe that, in order for treatments to be effective in advancing budbreak and full bloom, some minimum amount of chilling must be accumulated prior to application (perhaps 60% to 75% of chilling requirement). We have also determined that where chilling is well below minimum requirement, higher rates of CAN (25%) are necessary to advance bloom. A further advantage of using Armobreak + CAN is improved N level in buds and bark after treatment (1997).


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 697
Author(s):  
Darlena Caroline da Cruz Corrêa ◽  
Abmael da Silva Cardoso ◽  
Mariane Rodrigues Ferreira ◽  
Débora Siniscalchi ◽  
Ariana Desie Toniello ◽  
...  

The intensification of pasture production has increased the use of N fertilizers—a practice that can alter soil greenhouse gas (GHG) fluxes. The objective of the present study was to evaluate the fluxes of CH4, CO2, and N2O in the soil of Urochloa brizantha ‘Marandu’ pastures fertilized with different sources and doses of N. Two field experiments were conducted to evaluate GHG fluxes following N fertilization with urea, ammonium nitrate, and ammonium sulfate at doses of 0, 90, 180, and 270 kg N ha−1. GHG fluxes were quantified using the static chamber technique and gas chromatography. In both experiments, the sources and doses of N did not significantly affect cumulative GHG emissions, while N fertilization significantly affected cumulative N2O and CO2 emissions compared to the control treatment. The N2O emission factor following fertilization with urea, ammonium nitrate, and ammonium sulfate was lower than the United Nations’ Intergovernmental Panel on Climate Change standard (0.35%, 0.24%, and 0.21%, respectively, with fractionation fertilization and 1.00%, 0.83%, and 1.03%, respectively, with single fertilization). These findings are important for integrating national inventories and improving GHG estimation in tropical regions.


1987 ◽  
Vol 109 (2) ◽  
pp. 387-391 ◽  
Author(s):  
O. P. Meelu ◽  
S. Saggar ◽  
M. S. Maskina ◽  
R. S. Rekhi

SummaryThe results of four field experiments conducted for 2 or 3 years on two soils, loamy sand (Typic Ustipsamments) and silty clay loam (Natric Ustochrept) showed that in rice, application of N in three equal amounts was more efficient than one or two applications, irrespective of source of N and type of soil. The results further showed that application of the first dose of N 7 days after transplanting rice was more beneficial than its application at transplanting. Calcium ammonium nitrate was significantly inferior to urea and/or ammonium sulphate for rice in both soils. There were no significant differences in wheat yield, N concentration or uptake due to time and source of N application.


Sign in / Sign up

Export Citation Format

Share Document