Removal of Cobalt Ion in Aqueous Solution Using Zeolitic Materials Synthesized from Jeju Volcanic Rocks

2021 ◽  
Vol 30 (9) ◽  
pp. 719-726
Author(s):  
Eunnim Cho ◽  
Chang-Han Lee ◽  
Moon il Kim
2015 ◽  
Vol 72 (3) ◽  
pp. 478-483 ◽  
Author(s):  
Yunleiyu Guo ◽  
Tingting Shen ◽  
Chen Wang ◽  
Jing Sun ◽  
Xikui Wang

The removal of caffeine (CAF) in aqueous solution by peroxymonosulfate oxidant activated with cobalt ion was investigated under a variety of operating conditions. The effects of various operating parameters, such as oxone and Co2+ concentrations, pH value, and the coexistence of dissolved organic matter and inorganic anions on the removal of CAF have been investigated. The removal efficiency increased with the increase in the concentrations of oxone and Co2+ ion added. The additions of chloride, bicarbonate, and sodium humate have negative effects on the removal of CAF. Near-neutral condition (5.0 < pH < 7.0) is favorable for the removal of CAF. Based on our experiments, 100% degradation of 50 mg/L CAF can be achieved within 4 minutes under the conditions of 1.00 mM oxone and 0.10 mM Co2+ ion at pH 5.0–7.0.


2020 ◽  
Vol 26 (2) ◽  
pp. 200127-0
Author(s):  
Min-Gyu Lee ◽  
Sang-Kyu Kam ◽  
Chang-Han Lee

The study focused on the removal of Sr and Cs ions in aqueous solutions by zeolitic materials synthesized from Jeju volcanic rocks using a fusion/hydrothermal method. The synthesis of the zeolitic materials was carried out using the fusion/hydrothermal method to reduce crystallization time. Morphological structures of the zeolitic materials could be confirmed to be the Na-A zeolite structure and crystalline with the chamfered-edged structure. In the adsorption experiment, as the initial concentrations of the Sr and Cs ions increased, it took longer to reach adsorption equilibrium. The adsorption kinetics and isotherms of Sr and Cs ions were predicted well by the pseudo-2nd-order and Langmuir isotherm models, respectively. The maximum adsorption capacities of Sr and Cs ions by the Langmuir isotherm model were 154.8 mg/g and 144.0 mg/g, respectively. The zeolitic materials prepared in this study is considered as an effective adsorbent for removing Sr and Cs ions in aqueous solutions.


2021 ◽  
Author(s):  
Luis Salala ◽  
Noriaki Watanabe ◽  
Kaori Takahashi ◽  
Jose Erazo ◽  
Noriyoshi Tsuchiya

<p>Chemical stimulation using high-concentration hydrofluoric and hydrochloric acids has been a classic method to enhance the permeability of a geothermal reservoir. Our research group has recently proposed a new chemical stimulation using a weakly acidic (moderate-reactivity) aqueous solution containing an environmentally friendly chelating agent to create voids, which are sustained under crustal stress, by selective mineral dissolution with preventing precipitation by chelation of metal ions. In the present study, we have conducted chelating agent flooding experiments using an aqueous solution of pH 4 containing readily biodegradable chelating agent (GLDA) on various types of fractured volcanic rocks at 200 <sup>o</sup>C and effective confining stress of 15 MPa. The experiments have revealed fast permeability enhancement of up to approximately four times, from the initial value, in two hours. Further analyses have revealed phenocrysts of Fe-bearing minerals (ex. Hematite) dissolved faster than the groundmass of the rocks to create the voids. These results show the possibility of the new chemical stimulation.</p><p>Keywords: Chemical stimulation, Chelating agents, Geothermal energy, EGS</p>


Author(s):  
Xian Wang ◽  
Jiankang Li

Abstract Beryl and phenakite are important industrial beryllium minerals. In the hydrous melt of the BeO–Al2O3–SiO2–H2O (BASH) system, experiments using quench-type high-temperature and high-pressure equipment have revealed that the different activities of Al2O3 and SiO2 (αAl2O3 and αSiO2) are the main factors that lead to different beryllium mineral assemblages. In this study, we attempted in situ observation of the crystallization process of phenakite and beryl in an aqueous solution of the BASH system using a hydrothermal diamond-anvil cell. Experimental results indicate that phenakite and beryl can crystallize faster in this regime (i.e., 2.93–0.58 × 10−5 cm/s in length and 22.39–3.23 μm3/s in volume) than from a hydrous melt. In addition, in the phenakite and beryl crystallization, pressure–temperature conditions were greater than 467 °C and 220 MPa and 495 °C and 221 MPa, respectively, and their upper temperatures and pressures attained 845–870 °C and 500–1300 MPa. These features indicate that temperature is not the main factor that controls the stability of phenakite and beryl in the BASH system. This stability can be attributed to the diffusion of components in aqueous solution that change αSiO2 and αAl2O3 during the heating and cooling processes. During heating, αSiO2 increases while beryl is dissolving, which leads to phenakite crystallization; during cooling, αSiO2 and αAl2O3 are sufficient for the remaining beryl to recrystallize. Therefore, the transition between phenakite and beryl in the aqueous solution in the BASH system may be different during heating and cooling processes. This reasoning can explain the abundance of phenakite in miarolitic cavities and the occurrence of phenakite, rather than beryl, in hydrothermally altered pegmatites, volcanic rocks, and other beryllium-rich rocks.


2020 ◽  
Vol 313 ◽  
pp. 113569
Author(s):  
Kanayo L. Oguzie ◽  
Meng Qiao ◽  
Xu Zhao ◽  
Emeka E. Oguzie ◽  
Victor O. Njoku ◽  
...  

2015 ◽  
Vol 72 (12) ◽  
pp. 2154-2165 ◽  
Author(s):  
Xianfang Zhu ◽  
Tiehong Song ◽  
Zhuo Lv ◽  
Guodong Ji

An adsorbent, volcanic rocks coated with α-Fe2O3 nanoparticles, was prepared and utilized for the removal of Cu(II) and Ni(II) ions from an aqueous solution. Characterization of the coated volcanic rocks indicated that the α-Fe2O3 nanoparticles were successfully and homogeneously distributed on the volcanic rocks, including penetration into rock pores. Batch experiments were conducted to investigate adsorption performance. The adsorption behavior of both ions was found to best fit a pseudo second-order model and Langmuir isotherm. The maximum adsorption capacities of Cu(II) and Ni(II) ions were 58.14 mg g−1 and 56.50 mg g−1 at 293 K, respectively, and increased with rising temperature. The loaded α-Fe2O3 nanoparticles onto volcanic rock significantly increased removal of Cu(II) and Ni(II) ions. The adsorption process was combined control of film diffusion and intra-particle diffusion. Adsorption thermodynamics indicated the adsorption process was spontaneous and occurred mainly through chemisorption. The results confirmed that the volcanic rocks coated with α-Fe2O3 nanoparticles acted as a high-efficiency and low-cost absorbent, and effectively removed Cu(II) and Ni(II) from wastewater.


Author(s):  
G. G. Cocks ◽  
C. E. Cluthe

The freeze etching technique is potentially useful for examining dilute solutions or suspensions of macromolecular materials. Quick freezing of aqueous solutions in Freon or propane at or near liquid nitrogen temperature produces relatively large ice crystals and these crystals may damage the structures to be examined. Cryoprotective agents may reduce damage to the specimem, hut their use often results in the formation of a different set of specimem artifacts.In a study of the structure of polyethylene oxide gels glycerol and sucrose were used as cryoprotective agents. The experiments reported here show some of the structures which can appear when these cryoprotective agents are used.Figure 1 shows a fractured surface of a frozen 25% aqueous solution of sucrose. The branches of dendritic ice crystals surrounded hy ice-sucrose eutectic can be seen. When this fractured surface is etched the ice in the dendrites sublimes giving the type of structure shown in Figure 2. The ice-sucrose eutectic etches much more slowly. It is the smooth continuous structural constituent surrounding the branches of the dendrites.


Sign in / Sign up

Export Citation Format

Share Document