Frequency of Isolation and Antimicrobial Susceptibility Patterns of Staphylococcus intermedius and Pseudomonas aeruginosa Isolates From Canine Skin and Ear Samples Over a 6-Year Period (1992–1997)

2002 ◽  
Vol 38 (5) ◽  
pp. 407-413 ◽  
Author(s):  
Annette D. Petersen ◽  
Robert D. Walker ◽  
Mark M. Bowman ◽  
Harold C. Schott ◽  
Edmund J. Rosser

Staphylococcus intermedius (S. intermedius) was isolated from 88.6% and 49.4% of skin and ear samples, respectively, during the years 1992 through 1997, and frequency of isolation remained unchanged. More than 95% of all S. intermedius isolates were susceptible to cephalothin and oxacillin, providing support for empirical treatment of canine skin and ear infections with cephalexin. Pseudomonas aeruginosa (P. aeruginosa) was isolated from 7.5% and 27.8% of skin and ear samples, respectively. The frequency of isolation from skin samples increased over the study period. Because of multidrug-resistant profiles for P. aeruginosa isolates, especially for ear isolates, empirical treatment of P. aeruginosa infections is not advisable.

2020 ◽  
pp. 59-67
Author(s):  
Sulaiman D. Sulaiman ◽  
Ghusoon A. Abdulhasan

  Pseudomonas aeruginosa is considered as a developing opportunistic nosocomial pathogen and is well-known for its multidrug resistance that can be efficiently treated by a combination of antibiotics andefflux pump inhibitors (EPI). Therefore, the purpose of this study was to investigate the effect of curcumin as an EPI for the enhancement of the effectiveness of antibiotics against multidrug resistant (MDR) isolates ofP. aeruginosa. Susceptibility patterns of suspected bacteria was determined using the disc diffusion method andresistant bacteria were identified using chromogenic agar and 16S rDNA. The effectsof curcuminon the enhancement of antibiotics’s activity was evaluated usingthe broth microdilution method.The susceptibility patterns for 50 (67.6%) suspectedP. aeruginosaisolates showed that 36 (72%) of these isolateswere resistant to one of the used antibiotics,whereasonly 21 (42%) were MDR. The highest percentage of resistance was observedtoceftazidime (66%) followed by ciprofloxacin and levofloxacin (40%). Only 35 isolates were specified by chromogenic agar and 16S rDNAas P. aeruginosa.The minimal inhibitory concentration (MIC) of 35 isolates for ciprofloxacin resistant was between 4 and128 µg/ml while for ceftazidime was between 64and 512 µg/ml. After the addition of 50 μg/ml curcumin with ciprofloxacin, there wasa significant increase in the sensitivity (p≤ 0.01) of 13 MDR P.aeroginosa isolates whereas no differences in the sensitivity to ceftazidime were recorded before and after addition ofcurcumin. In conclusion, the results of this study show that curcumin can decrease the MIC value of ciprofloxacin in MDR isolates of P. aeruginosaand can be used as a native compound to enhance the treatment of resistant isolates with ciprofloxacin.


mSphere ◽  
2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Xuan Qin ◽  
Chuan Zhou ◽  
Danielle M. Zerr ◽  
Amanda Adler ◽  
Amin Addetia ◽  
...  

ABSTRACTClinical isolates ofPseudomonas aeruginosafrom patients with cystic fibrosis (CF) are known to differ from those associated with non-CF hosts by colony morphology, drug susceptibility patterns, and genomic hypermutability.Pseudomonas aeruginosaisolates from CF patients have long been recognized for their overall reduced rate of antimicrobial susceptibility, but their intraclonal MIC heterogeneity has long been overlooked. Using two distinct cohorts of clinical strains (n= 224 from 56 CF patients,n= 130 from 68 non-CF patients) isolated in 2013, we demonstrated profound Etest MIC heterogeneity in CFP. aeruginosaisolates in comparison to non-CFP. aeruginosaisolates. On the basis of whole-genome sequencing of 19 CFP. aeruginosaisolates from 9 patients with heterogeneous MICs, the core genome phylogenetic tree confirmed the within-patient CFP. aeruginosaclonal lineage along with considerable coding sequence variability. No extrachromosomal DNA elements or previously characterized antibiotic resistance mutations could account for the wide divergence in antimicrobial MICs betweenP. aeruginosacoisolates, though many heterogeneous mutations in efflux and porin genes and their regulators were present. A unique OprD sequence was conserved among the majority of isolates of CFP. aeruginosaanalyzed, suggesting a pseudomonal response to selective pressure that is common to the isolates. Genomic sequence data also suggested that CF pseudomonal hypermutability was not entirely due to mutations inmutL,mutS, anduvr. We conclude that the net effect of hundreds of adaptive mutations, both shared between clonally related isolate pairs and unshared, accounts for their highly heterogeneous MIC variances. We hypothesize that this heterogeneity is indicative of the pseudomonal syntrophic-like lifestyle under conditions of being “locked” inside a host focal airway environment for prolonged periods.IMPORTANCEPatients with cystic fibrosis endure “chronic focal infections” with a variety of microorganisms. One microorganism,Pseudomonas aeruginosa, adapts to the host and develops resistance to a wide range of antimicrobials. Interestingly, as the infection progresses, multiple isogenic strains ofP. aeruginosaemerge and coexist within the airways of these patients. Despite a common parental origin, the multiple strains ofP. aeruginosadevelop vastly different susceptibility patterns to actively used antimicrobial agents—a phenomenon we define as “heterogeneous MICs.” By sequencing pairs ofP. aeruginosaisolates displaying heterogeneous MICs, we observed widespread isogenic gene lesions in drug transporters, DNA mismatch repair machinery, and many other structural or cellular functions. Coupled with the heterogeneous MICs, these genetic lesions demonstrated a symbiotic response to host selection and suggested evolution of a multicellular syntrophic bacterial lifestyle. Current laboratory standard interpretive criteria do not address the emergence of heterogeneous growth and susceptibilitiesin vitrowith treatment implications.


2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Salu Rai ◽  
Uday Narayan Yadav ◽  
Narayan Dutt Pant ◽  
Jaya Krishna Yakha ◽  
Prem Prasad Tripathi ◽  
...  

In Nepal, little is known about the microbiological profile of wound infections in children and their antimicrobial susceptibility patterns. Total of 450 pus/wound swab samples collected were cultured using standard microbiological techniques and the colonies grown were identified with the help of biochemical tests. The antimicrobial susceptibility testing was performed by Kirby-Bauer disc diffusion technique. Methicillin-resistantStaphylococcus aureusisolates were detected by using cefoxitin disc and confirmed by determining minimum inhibitory concentrations (MIC) of oxacillin. 264 (59%) samples were culture positive. The highest incidence of bacterial infections was noted in the age group of less than 1 year (76%). Out of 264 growth positive samples, Gram-positive bacteria were isolated from 162 (61%) samples and Gram-negative bacteria were found in 102 (39%) samples.Staphylococcus aureus(99%) was the predominant Gram-positive bacteria isolated andPseudomonas aeruginosa(44%) was predominant Gram-negative bacteria. About 19% ofS. aureusisolates were found to be methicillin-resistant MIC of oxacillin ranging from 4 μg/mL to 128 μg/mL. Among the children of Nepal, those of age less than 1 year were at higher risk of wound infections by bacteria.Staphylococcus aureusfollowed byPseudomonas aeruginosawere the most common bacteria causing wound infections in children.


2017 ◽  
Vol 66 (4) ◽  
pp. 427-431 ◽  
Author(s):  
Tomasz Bogiel ◽  
Aleksander Deptuła ◽  
Joanna Kwiecińska-Piróg ◽  
Małgorzata Prażyńska ◽  
Agnieszka Mikucka ◽  
...  

Pseudomonas aeruginosa rods are one of the most commonly isolated microorganisms from clinical specimens, usually responsible for nosocomial infections. Antibiotic-resistant P. aeruginosa strains may present reduced expression of virulence factors. This fact may be caused by appropriate genome management to adapt to changing conditions of the hospital environment. Virulence factors genes may be replaced by those crucial to survive, like antimicrobial resistance genes. The aim of this study was to evaluate, using PCR, the occurrence of exoenzyme S-coding gene (exoS) in two distinct groups of P. aeruginosa strains: 83 multidrug-sensitive (MDS) and 65 multidrug-resistant (MDR) isolates. ExoS gene was noted in 72 (48.7%) of the examined strains: 44 (53.0%) MDS and 28 (43.1%) MDR. The observed differences were not statistically significant (p = 0.1505). P. aeruginosa strains virulence is rather determined by the expression regulation of the possessed genes than the difference in genes frequency amongst strains with different antimicrobial susceptibility patterns.


2020 ◽  
Vol 25 (2) ◽  
pp. 49-54
Author(s):  
Rabin Gyawali ◽  
Ram Bahadur Khadka ◽  
Basudha Shrestha ◽  
Sarita Manandhar

Considerable increase in the prevalence and multidrug-resistant (MDR) Pseudomonas has been observed with towering morbidity and mortality. As a consequence of the haphazard use of antimicrobials, the spread of antimicrobial resistance is now a global issue. This study aimed to access the distribution rate and antibiotic susceptibility patterns of Pseudomonas species isolated from various clinical specimens in Kathmandu Model Hospital, Nepal. During the study period, 1252 samples were collected, cultured and the organism was isolated and identified. The antimicrobial susceptibility testing was done using the modified Kirby-Bauer disc diffusion method as per CLSI guidelines. Out of 1252 samples, 28 clinical isolates of Pseudomonas species were isolated. The highest number of Pseudomonas spp. was isolated from swab samples that included pus, ear, and wound (46.4 %). Pseudomonas spp. demonstrated marked resistance against cefixime (96.4 %) and showed higher sensitivity to piperacillin/tazobactam (92.9 %). The result showed pus, wound exudates, ear discharges samples exhibit Pseudomonas as common etiology of infection. Pseudomonas spp. demonstrated highest sensitivity against piperacillin/tazobactam, amikacin, meropenem, gentamycin. The steady resistance of Pseudomonas spp. to most of the antibiotics, necessitates these drugs to be confined to extreme infections and hospital intensive care units to circumvent the speedy emergence of resistant strains.


Author(s):  
Addisu Assefa ◽  
Mengistu Girma

Abstract Background Diarrheal diseases are responsible for high level of morbidity and mortality, particularly in children below 5 years. Salmonella and Shigella spp. are pathogenic microbes responsible for the major diarrheal associated mortality. The purpose of this study was to determine the prevalence, factors associated with Salmonella and Shigella isolates infections and their antimicrobial susceptibility patterns among diarrheic children aged below 5 years attending BRGH and GRH, Ethiopia. Methods A health institution based cross-sectional study was conducted from April to July 2016. One stool samples was collected from 422 diarrheic children under the ages of five and were cultured on to Hektoen Enteric (HE) and Salmonella-Shigella agar. Isolation identification of the Salmonella and Shigella isolates were conducted using standard bacteriological methods. Antibiotic susceptibility was done by Kirby–Bauer disk diffusion method. The isolates were defined as multidrug resistant if it was resistant to two or more antimicrobial agents. Descriptive statistics were employed and logistic regression models were constructed to determine factors associated with Shigella/Salmonella prevalence. Results The prevalence of Salmonella and Shigella isolates were 6.9 and 4.3%, respectively. Children aged between 1 to 3 years were significantly associated with Salmonella infection [AOR = 19.08, 95% CI (2.68–135.86)]. The odd of prevalence of Salmonella/Shigella isolates was significantly associated with absence of latrine, absence of hand washing after latrine, and in unimmunized children in adjusted odd ratio. Unimproved water sources and hand washing before meal had also higher odd of prevalence although the difference was not significant. All Salmonella and Shigella isolates were resistant to amoxicillin (100%). In addition, all Shigella isolates were completely resistant to chloramphenicol, and tetracycline, and were multidrug resistant. However, all Salmonella and Shigella isolates were susceptible to ciprofloxacin and ceftriaxone. Conclusion There was a relatively low prevalence of Salmonella and Shigella species in the study areas and were significantly associated with lack of personal hygiene and environmental sanitation. There were also higher drug resistance and multidrug resistant pattern. Personal hygiene and environmental sanitation, including access to latrine and supply of safe drinking water are suggested. Checking susceptibilities of Shigella and Salmonella isolates causing diarrhea is also suggested.


Sign in / Sign up

Export Citation Format

Share Document