scholarly journals Use of HAND terrain descriptor for estimating flood-prone areas in river basins

2021 ◽  
Vol 56 (3) ◽  
pp. 501-516
Author(s):  
Ana Alice Rodrigues Dantas ◽  
Adriano Rolim Paz

The flood hazard mapping in a river basin is crucial for flooding risk management, mitigation strategies, and flood forecasting and warning systems, among other benefits. One approach for this mapping is based on the HAND (Height Above Nearest Drainage) terrain descriptor, directly derived from the Digital Elevation Model (DEM), in which each pixel represents the elevation difference of this point in relation to the river drainage network to which it is connected. Considering the Mamanguape river basin (3,522.7 km²; state of Paraíba, Brazil) as the study location, the present research applied this method and verified it as for five aspects: consideration of a spatially variable minimum drainage area for denoting the river drainage initiation; the impact of considering a depressionless DEM; evaluation of hydrostatic condition; effect of incorporating an existing river vector network; and comparative analysis of basin morphology regarding longitudinal river profiles. According to the results, adopting a uniform minimum drainage area for the river network initiation is a simplification that should be avoided, using a spatially variable approach, which influences the amount and spatial distribution of flooded areas. Additionally, considering the depressionless DEM leads to higher values of HAND and to a smaller flooded area (difference ranging between 3% and 99%), when compared with the use of DEM with depression, despite 3.1% of the pixels representing depressions. The use of the depressionless DEM is recommended, whereas the DEM pre-processing by incorporating a vector network (stream burning) generates dubious results regarding the relation between HAND and the morphological pattern presented in the DEM. Moreover, the estimation of flooded areas based on HAND does not guarantee the hydrostatic condition, but this disagreement comprises a negligible area for practical purposes.

2018 ◽  
Vol 13 (1) ◽  
pp. 14-21 ◽  
Author(s):  
Win Win Zin ◽  
Akiyuki Kawasaki ◽  
Wataru Takeuchi ◽  
Zin Mar Lar Tin San ◽  
Kyaw Zaya Htun ◽  
...  

Flood hazard mapping is an effective non-structural measure for sustainable urban planning, protecting human properties, lives, and disaster risk reduction. In this study, flood hazard assessment for the Bago river basin was performed. The flood inundation map of the Bago river basin was developed by coupling a hydrological and hydraulic model with geographical information systems. Flood hazard maps with different return periods were developed. The flood hazard map can be utilized to enhance the effectiveness of disaster risk management activities.


Geosciences ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 371 ◽  
Author(s):  
Adrian Schmid-Breton ◽  
Gesa Kutschera ◽  
Ton Botterhuis ◽  
The ICPR Expert Group ‘Flood Risk Analysis’ (EG HIRI)

To determine the effects of measures on flood risk, the International Commission for the Protection of the Rhine (ICPR), supported by the engineering consultant HKV has developed a method and a GIS-tool named “ICPR FloRiAn (Flood Risk Analysis)”, which enables the broad-scale assessment of the effectiveness of flood risk management measures on the Rhine, but could be also applied to other rivers. The tool uses flood hazard maps and associated recurrence periods for an overall damage and risk assessment for four receptors: human health, environment, culture heritage, and economic activity. For each receptor, a method is designed to calculate the impact of flooding and the effect of measures. The tool consists of three interacting modules: damage assessment, risk assessment, and measures. Calculations using this tool show that the flood risk reduction target defined in the Action Plan on Floods of the ICPR in 1998 could be achieved with the measures already taken and those planned until 2030. Upon request, the ICPR will provide this tool and the method to other river basin organizations, national authorities, or scientific institutions. This article presents the method and GIS-tool developed by the ICPR as well as first calculation results.


Proceedings ◽  
2019 ◽  
Vol 48 (1) ◽  
pp. 6
Author(s):  
Mihnea Cristian Popa ◽  
Daniel Constantin Diaconu

The importance of identifying the areas vulnerable for both floods and flash-floods is an important component of risk management. The assessment of vulnerable areas is a major challenge in the scientific world. Adaptation and mitigation have generally been treated as two separate issues, both in public politics and in practice, in which mitigation is seen as the attenuation of the cause, and studies of adaption look into dealing with the consequences of climate change. Studies on the impact of climate change on flood risk are mostly conducted at the river basin or regional scale. Remote sensing and GIS technologies, together with the latest modelling techniques, can contribute to our ability to predict and manage floods. Various methods are commonly used to map flood sensitivity. Recent methods such as multicriteria evaluation, decision tree analysis (DT), fuzzy theory, weight of samples (WoE), artificial neural networks (ANN), frequency ratio (FR) and logistic regression (LR) approaches have been widely used by many researchers.


2021 ◽  
Vol 880 (1) ◽  
pp. 012016
Author(s):  
Tze Huey Tam ◽  
Muhammad Zulkarnain Abd Rahman ◽  
Sobri Harun ◽  
Sophal Try ◽  
Ismaila Usman Kaoje ◽  
...  

Abstract Climate change has had a significant impact on the hydrological cycle, causing changes in precipitation patterns in both frequency and magnitude. The aim of this study is to assess the effect of climate change on flood hazards in Kelantan River Basin, Malaysia. A distributed hydrological model called Rainfall-Runoff-Inundation (RRI) simulates floods under current and future climate scenarios. The Climate Change Factor (CCF) is a tool for forecasting future climate scenarios. The storm used in this analysis had 50-year and 100-year recurrence intervals every 24 hours (ARI). The finding shows that the streamflow in Guillemard station will increase in the future for both the 50- and 100-year ARI. The streamflow increased to 10329 m3/s from 8434.9 m3/s in the current state and to 11220.2 m3/s from 9157.4 m3/s in the 50- and 100-year ARI, respectively. In both cases, the 100-year ARI flood magnitude is significantly less than the 50-year ARI flood extent (current and future). However, the flood depth in several towns located downstream of the Kelantan River Basin is more significant for the 100-year ARI than for the 50-year ARI for both cases. The study’s findings would be helpful to relevant agencies and government departments understand the current and potential flood hazard situation in the study area and assist them in developing effective mitigation strategies for future flood hazards.


2022 ◽  
Vol 3 ◽  
Author(s):  
Serena Ceola ◽  
Alessio Domeneghetti ◽  
Guy J. P. Schumann

River floods are one of the most devastating extreme hydrological events, with oftentimes remarkably negative effects for human society and the environment. Economic losses and social consequences, in terms of affected people and human fatalities, are increasing worldwide due to climate change and urbanization processes. Long-term dynamics of flood risk are intimately driven by the temporal evolution of hazard, exposure and vulnerability. Although needed for effective flood risk management, a comprehensive long-term analysis of all these components is not straightforward, mostly due to a lack of hydrological data, exposure information, and large computational resources required for 2-D flood model simulations at adequately high resolution over large spatial scales. This study tries to overcome these limitations and attempts to investigate the dynamics of different flood risk components in the Murray-Darling basin (MDB, Australia) in the period 1973–2014. To this aim, the LISFLOOD-FP model, i.e., a large-scale 2-D hydrodynamic model, and satellite-derived built-up data are employed. Results show that the maximum extension of flooded areas decreases in time, without revealing any significant geographical transfer of inundated areas across the study period. Despite this, a remarkable increment of built-up areas characterizes MDB, with larger annual increments across not-flooded locations compared to flooded areas. When combining flood hazard and exposure, we find that the overall extension of areas exposed to high flood risk more than doubled within the study period, thus highlighting the need for improving flood risk awareness and flood mitigation strategies in the near future.


Author(s):  
Rita Nogherotto ◽  
Adriano Fantini ◽  
Francesca Raffaele ◽  
Fabio Sante ◽  
Francesco Dottori ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Vahdettin Demir ◽  
Ozgur Kisi

In this study, flood hazard maps were prepared for the Mert River Basin, Samsun, Turkey, by using GIS and Hydrologic Engineering Centers River Analysis System (HEC-RAS). In this river basin, human life losses and a significant amount of property damages were experienced in 2012 flood. The preparation of flood risk maps employed in the study includes the following steps: (1) digitization of topographical data and preparation of digital elevation model using ArcGIS, (2) simulation of flood lows of different return periods using a hydraulic model (HEC-RAS), and (3) preparation of flood risk maps by integrating the results of (1) and (2).


Sign in / Sign up

Export Citation Format

Share Document