scholarly journals Photogrammetry: What, How, and Where

10.5334/bck.d ◽  
2021 ◽  
pp. 25-37
Author(s):  
Hafizur Rahaman

Developing 3D digital models of artefacts, monuments, excavations and historic landscapes as part of digital documentation is becoming common in the field of heritage management, virtual tourism, immersive Due to the present pandemic situation with restricted social distancing; gallery, library, archive, and museum (GLAM) industries are facing an incremental burden on both their income and visitor traffic, which is affecting their survival. As a way out, we can see some GLAM institutes are trying to expand their collections on digital platforms for showcasing and promoting virtual visits. Numerous online portals and repositories are evolving for archiving, sharing, and trading 3D models are also evolving to support this digital vibe. This chapter explains the basics of photogrammetry and its development workflow, including data acquisition (photo shooting), data processing and a few post-processing tools. visualisation and scientific research. Such 3D reconstruction or 3D data acquisition form a laser scanning process involves high costs, manual labour and substantial expertise. On the other hand, Image-based 3D modelling photogrammetry software offers a comparatively inexpensive alternative and can handle the task with ease. Besides, documenting heritage artefacts with free and open-source software (FOSS) in supporting photogrammetry is getting popular for quality data production.

Author(s):  
Juha Hyyppä ◽  
Lingli Zhu ◽  
Zhengjun Liu ◽  
Harri Kaartinen ◽  
Anttoni Jaakkola

Smartphones with larger screens, powerful processors, abundant memory, and an open operation system provide many possibilities for 3D city or photorealistic model applications. 3D city or photorealistic models can be used by the users to locate themselves in the 3D world, or they can be used as methods for visualizing the surrounding environment once a smartphone has already located the phone by other means, e.g. by using GNSS, and then to provide an interface in the form of a 3D model for the location-based services. In principle, 3D models can be also used for positioning purposes. For example, matching of images exported from the smartphone and then registering them in the existing 3D photorealistic world provides the position of the image capture. In that process, the central computer can do a similar image matching task when the users locate themselves interactively into the 3D world. As the benefits of 3D city models are obvious, this chapter demonstrates the technology used to provide photorealistic 3D city models and focus on 3D data acquisition and the methods available in 3D city modeling, and the development of 3D display technology for smartphone applications. Currently, global geoinformatic data providers, such as Google, Nokia (NAVTEQ), and TomTom (Tele Atlas), are expanding their products from 2D to 3D. This chapter is a presentation of a case study of 3D data acquisition, modeling and mapping, and visualization for a smartphone, including an example based on data collected by mobile laser scanning data from the Tapiola (Espoo, Finland) test field.


2013 ◽  
pp. 1011-1052 ◽  
Author(s):  
Juha Hyyppä ◽  
Lingli Zhu ◽  
Zhengjun Liu ◽  
Harri Kaartinen ◽  
Anttoni Jaakkola

Smartphones with larger screens, powerful processors, abundant memory, and an open operation system provide many possibilities for 3D city or photorealistic model applications. 3D city or photorealistic models can be used by the users to locate themselves in the 3D world, or they can be used as methods for visualizing the surrounding environment once a smartphone has already located the phone by other means, e.g. by using GNSS, and then to provide an interface in the form of a 3D model for the location-based services. In principle, 3D models can be also used for positioning purposes. For example, matching of images exported from the smartphone and then registering them in the existing 3D photorealistic world provides the position of the image capture. In that process, the central computer can do a similar image matching task when the users locate themselves interactively into the 3D world. As the benefits of 3D city models are obvious, this chapter demonstrates the technology used to provide photorealistic 3D city models and focus on 3D data acquisition and the methods available in 3D city modeling, and the development of 3D display technology for smartphone applications. Currently, global geoinformatic data providers, such as Google, Nokia (NAVTEQ), and TomTom (Tele Atlas), are expanding their products from 2D to 3D. This chapter is a presentation of a case study of 3D data acquisition, modeling and mapping, and visualization for a smartphone, including an example based on data collected by mobile laser scanning data from the Tapiola (Espoo, Finland) test field.


2021 ◽  
Vol 12 (24) ◽  
pp. 115
Author(s):  
Diego Francisco García-Molina ◽  
Ramón González-Merino ◽  
Jesús Rodero-Pérez ◽  
Bartolomé Carrasco-Hurtado

<p class="VARKeywords">One of the main objectives of heritage management policies is to promote measures aimed at the maintenance, restoration and enhancement of cultural and archaeological assets. To guarantee this, the responsible institutions must promote actions for the dissemination and transference of cultural heritage, as well as promoting actions with the greatest possible rigour, developing scientific and technical studies that support and improve intervention methods. Recent technological advances in fields such as photogrammetry, digital terrestrial scanning and 3D modelling have made a significant contribution to the digital preservation and dissemination of architectural heritage.</p><p class="VARKeywords">European administrations, in their desire of regional development, as well as the central or local governments have notably boosted the recovery of their rich and diverse heritage. A particular case is Priego de Cordoba’s Castle, a stronghold which was one of the most important monumental icons of the Andalusian period.</p><p class="VARKeywords">Currently, this site is the main target of many architectural interventions and a model due to the implementation of last generation techniques in digital preservation. The local archaeological department promotes a large number of interventions and archaeological excavations. This has made a priority to get a qualitative geometrical 3D documentation, and therefore a constantly updated the point cloud (xyzRGB).</p><p class="VARKeywords">This paper is focussed on presenting the results of the digital preservation process through 2D planimetry obtained from photogrammetric technics, 3D models, and geospatial data. These techniques are a previous step to large architectonical intervention planned in Priego de Cordoba’s Castle, in particular, the identified structures as Wall 1 and Tower 1.</p><p class="VARKeywords">Two out of the three studied structures can be found in Wall 1. They correspond to a cobblestone pavement located in the rampart of the Wall 1, which is a post-medieval period; a double-stepped semi-underground path, excavated in the infill of the wall. The third structure studied in this paper consists of a well, which drills vertically the infill of the wall of the Tower 1. This feature is interpreted in the last research as a vertical well to place the weights of the clock sited in this tower until the 19th century.</p><p class="VARKeywords">This work combines two techniques of geometric documentation to obtain a more complete point cloud. The terrestrial laser scanning, and the photogrammetry due to the higher colour performance, along with the completion of the point cloud obtained with the laser scanner. Along with this study, we will analyse the features which will better define the best technique to fit the documentation of the different structures. Their geometric characteristics, the incidence of sunlight or the accessibility will condition the use and choice of the technique.</p><p class="VARKeywords">We have stated that there is software nowadays which makes it easier to access and consult the information through new computing hardware. Besides, we have highlighted the importance of knowledge and synergy from the different stakeholders implied (city council, technological centre and private companies). The final goal consists of making the society aware of the capital importance of digital preservation as well as dissemination of science.</p>


Author(s):  
M. Pulcrano ◽  
S. Scandurra ◽  
E. Fragalà ◽  
D. Palomba ◽  
A. di Luggo

Abstract. The paper presents the results of a research carried out on the Church of Santa Maria degli Angeli in Pizzofalcone in Naples, in which multi-sensor surveys have been performed in order to assess the architectonical, geometrical and colorimetric characteristics of the majestic basilica. The use of integrated technologies made it possible to realize 3D digital models that allowed the complete representation of the building, integrating data and filling the gaps of the different previous surveys. The performances of the various reality-based technologies employed have been subjected to critical analysis in order to maximize their potential, optimize survey and data elaboration phases, and obtain the expected results. These latter have been defined through the derived digital re-elaborations and representations. Hence, the objective of the research is to carry out a comparative analysis on the 3D models generated through the different active and passive sensors employed in order to proceed with their integration and achieve an accurate, original and updated methodology of building survey.


2020 ◽  
Vol 8 (3) ◽  
pp. 143-150
Author(s):  
Haqul Baramsyah ◽  
Less Rich

The digital single lens reflex (DSLR) cameras have been widely accepted to use in slope face photogrammetry rather than the expensive metric camera used for aerial photogrammetry. 3D models generated from digital photogrammetry can approach those generated from terrestrial laser scanning in term of scale and level of detail. It is cost effective and has equipment portability. This paper presents and discusses the applicability of close-range digital photogrammetry to produce 3D models of rock slope faces. Five experiments of image capturing method were conducted to capture the photographs as the input data for processing. As a consideration, the appropriate baseline lengths to capture the slope face to get better result are around 1/6 to 1/8 of target distance.  A fine quality of 3D model from data processing is obtained using strip method and convergent method with 80% overlapping in each photograph. A random camera positions with different distances from the slope face can also generate a good 3D model, however the entire target should be captured in each photograph. The accuracy of the models is generated by comparing the 3D models produced from photogrammetry with the 3D data obtained from laser scanner. The accuracy of 3D models is quite satisfactory with the mean error range from 0.008 to 0.018 m.


Author(s):  
Elizaveta M. Makarycheva ◽  
◽  
Тaras I. Kuznetsov ◽  
Sergey A. Polovkov ◽  
Alexander I. Baryshev ◽  
...  

The article presents the results of the development of specialized 3D-GIS as a tool for structuring, storing, reproducing, processing and analyzing data for geotechnical monitoring of main pipeline facilities. The authors proposed a solution to the problem of the complexity of processing large amounts of data by creating a unified environment of geographically distributed information through a geo-portal and implementing services on the basis of the geo-portal for automated processing and analysis of information, as well as computational algorithms. The description of the structure and functionality of the developed 3D-GIS is given. Methods for obtaining and processing 3D data are disclosed, and the data is analyzed. Results of a quantitative assessment of changes in the natural environment, plan-elevation position and geometry of objects based on the data of several cycles of surveys by methods of ground and air laser scanning are presented. The advantages of 3D-GIS in solving problems of geotechnical monitoring, as well as the possibility of using 3D-models for solving other production and research problems are highlighted.


Author(s):  
W. Hua ◽  
Y. Qiao ◽  
M. Hou

Abstract. Laser scanning or photogrammetry are useful individual techniques for digital documentation of cultural heritage sites. However, these techniques are of limited usage if cultural heritage such as the Great Wall is in harsh geographical conditions. The Great Wall is usually built on the ridge with cliffs on both sides, so it is very difficult to construct scaffolding. Therefore, the three-dimensional (3D) data obtained from the traditional 3D laser scanning is not complete. As UAV cannot enter the enemy tower, the 3D structure data inside the enemy tower with unmanned aerial vehicle (UAV) photogrammetry is missing. In order to explore effective methods to completely collect the 3D data of cultural heritage under harsh geographical environment, this study focuses on establishing a 3D model and the associated digital documentation for the No.15 enemy tower of the New Guangwu Great Wall using a combination of terrestrial laser scanning and UAV photogrammetry. This paper proposes an integrated data collection method and reduces the layout of image control points using RTK-UAV technology, which improved work efficiency and reduced work risks as well. In this paper, the internal structure data of the Great Wall enemy tower was collected by laser scanning, the external structure data was collected by UAV photogrammetry, and data fusion was based on ICP algorithm. Finally, we obtained the complete and high quality 3D digital documentation of the Great Wall enemy tower, the data can be displayed digitally and help heritage experts complete the Great Wall's restoration. This study demonstrates the potential of integrating terrestrial laser scanning and UAV photogrammetry in 3D digital documentation of cultural heritage sites.


Author(s):  
J. Kaňuk ◽  
S. Zubal ◽  
J. Šupinský ◽  
J. Šašak ◽  
M. Bombara ◽  
...  

<p><strong>Abstract.</strong> High-resolution solar radiation modelling requires the three-dimensional geometric structure of the landscape to be respected. Currently, remote sensing methods such as laser scanning and close-range photogrammetry are most commonly used for detailed mapping. The output is detailed 3D models containing buildings, trees, relief and other landscape features. The raster approach allows modeling solar energy for relief, but it is unsuitable for landscape objects such as buildings and trees. The polygonal features vector approach is mainly designed for buildings. Our goal is to create a freely available tool for highly detailed solar radiation modelling for geometrically complex 3D landscape objects. In the paper, we present a prototype of the v3.sun module. We propose a solution of solar radiation modeling designed for all landscape features based on TIN data structure. In the paper, tests of the proposed algorithmic solution for various types of 3D data obtained from the above-mentioned collection methods are demonstrated.</p>


2013 ◽  
Vol 353-356 ◽  
pp. 3476-3479
Author(s):  
Jun Lan Zhao ◽  
Ran Wu ◽  
Lei Wang ◽  
Yi Qin Wu

The study of 3D laser scanning technology in Category Conservation is one of the hot researches in recent years. Through the high-speed laser scanning, catching the 3D data of an object in large-scale with high efficiency, high accuracy and excellent resolution, is a new way in 3D reconstruction and image data acquisition. The method has achieved good results through the experiment.


Author(s):  
M. Lo Brutto ◽  
R. Sciortino ◽  
A. Garraffa

Digital documentation and 3D modelling of archaeological sites are important for understanding, definition and recognition of the values of the sites and of the archaeological finds. The most part of archaeological sites are outdoor location, but a cover to preserve the ruins protects often parts of the sites. The possibility to acquire data with different techniques and merge them by using a single reference system allows creating multi-parties models in which 3D representations of the individual objects can be inserted. <br><br> The paper presents the results of a recent study carried out by Geomatics Laboratory of University of Palermo for the digital documentation and 3D modelling of Eraclea Minoa archaeological site. This site is located near Agrigento, in the south of Sicily (Italy) and is one of the most famous ancient Greek colonies of Sicily. The paper presents the results of the integration of different data source to survey the Eraclea Minoa archaeological site. The application of two highly versatile recording systems, the TLS (Terrestrial Laser Scanning) and the RPAS (Remotely Piloted Aircraft System), allowed the Eraclea Minoa site to be documented in high resolution and with high accuracy. The integration of the two techniques has demonstrated the possibility to obtain high quality and accurate 3D models in archaeological survey.


Sign in / Sign up

Export Citation Format

Share Document