scholarly journals Are Past and Future Selves Perceived Differently from Present Self? Replication and Extension of Pronin and Ross (2006) Temporal Differences in Trait Self-Ascription

2021 ◽  
Vol 34 (1) ◽  
pp. 29
Author(s):  
Nadia Adelina ◽  
Gilad Feldman
2020 ◽  
Vol 655 ◽  
pp. 185-198
Author(s):  
J Weil ◽  
WDP Duguid ◽  
F Juanes

Variation in the energy content of prey can drive the diet choice, growth and ultimate survival of consumers. In Pacific salmon species, obtaining sufficient energy for rapid growth during early marine residence is hypothesized to reduce the risk of size-selective mortality. In order to determine the energetic benefit of feeding choices for individuals, accurate estimates of energy density (ED) across prey groups are required. Frequently, a single species is assumed to be representative of a larger taxonomic group or related species. Further, single-point estimates are often assumed to be representative of a group across seasons, despite temporal variability. To test the validity of these practices, we sampled zooplankton prey of juvenile Chinook salmon to investigate fine-scale taxonomic and temporal differences in ED. Using a recently developed model to estimate the ED of organisms using percent ash-free dry weight, we compared energy content of several groups that are typically grouped together in growth studies. Decapod megalopae were more energy rich than zoeae and showed family-level variability in ED. Amphipods showed significant species-level variability in ED. Temporal differences were observed, but patterns were not consistent among groups. Bioenergetic model simulations showed that growth rate of juvenile Chinook salmon was almost identical when prey ED values were calculated on a fine scale or on a taxon-averaged coarse scale. However, single-species representative calculations of prey ED yielded highly variable output in growth depending on the representative species used. These results suggest that the latter approach may yield significantly biased results.


2020 ◽  
Vol 29 (4) ◽  
pp. 741-757
Author(s):  
Kateryna Hazdiuk ◽  
◽  
Volodymyr Zhikharevich ◽  
Serhiy Ostapov ◽  
◽  
...  

This paper deals with the issue of model construction of the self-regeneration and self-replication processes using movable cellular automata (MCAs). The rules of cellular automaton (CA) interactions are found according to the concept of equilibrium neighborhood. The method is implemented by establishing these rules between different types of cellular automata (CAs). Several models for two- and three-dimensional cases are described, which depict both stable and unstable structures. As a result, computer models imitating such natural phenomena as self-replication and self-regeneration are obtained and graphically presented.


Plant Disease ◽  
1997 ◽  
Vol 81 (9) ◽  
pp. 1053-1056 ◽  
Author(s):  
R. S. Hunt ◽  
F. G. Peet

The spread rate of tomentosus root disease, caused by Inonotus tomentosus, was investigated by a new technique employing temporal differences in the initiation of the reduced annual radial increment between pairs of diseased trees. Pairs of infected trees (stumps) located on the periphery of disease centers were selected in each of six widely separated spruce (Picea spp.) stands in British Columbia. Distances between 12 pairs of stumps were measured, and disks were collected from each stump. Similarly, disks from four additional pairs were collected from trees in a younger stand. Uninfected control disks were collected for all sites. Tree-ring measurements were determined for all disk samples and the year in which the reduction of the annual increment attributable to I. tomentosus began was determined for infected trees. The difference between initiation years for pairs of infected trees divided into the distance between them produced an average annual spread rate of 20 cm/yr. This rate will be used in developing a model for the disease.


2021 ◽  
Vol 32 (1) ◽  
pp. 5-16
Author(s):  
Jan Adversario

This qualitative phenomenological study examined the occupational downgrading experiences of six adult immigrants. Occupational downgrading happens when an individual’s occupation post immigration does not match his or her education credentials and previous professional experiences. The goal is to make sense of the participants’ narratives through the lens of possible selves theory. Therefore, the research questions guiding this study were (1) How do occupational downgrading experiences of immigrants shape their integration to the U.S. workforce? and (2) How can we make sense of the participants’ narratives through the lens of possible selves theory? Phenomenological interviews served as the main source for data collection. In addition, artifacts allowed the participants to enrich their stories. Themes that emerged from the participants’ occupational downgrading experiences include underemployment, shift in status, language barrier, feeling of discrimination, and lack of inspiration at the new job. Looking at past, present, and future selves, the participants’ narratives were examined first through identity transition processes: separation, transition, and reincorporation. The study adds to a developing body of literature focusing on the possible selves of adult immigrants experiencing occupational downgrading. In particular, they inform who is participating in adult education. Likewise, this study centralizes the immigrant as participant to adult learning; it provides new narratives of adults in transition.


2021 ◽  
Vol 53 ◽  
pp. 101087
Author(s):  
Jesús E. Rueda-Almazán ◽  
Víctor Manuel Hernández ◽  
Jorge René Alcalá-Martínez ◽  
Andrea Fernández-Duque ◽  
Mariana Ruiz-Aguilar ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniel Valente

AbstractImitating the transition from inanimate to living matter is a longstanding challenge. Artificial life has achieved computer programs that self-replicate, mutate, compete and evolve, but lacks self-organized hardwares akin to the self-assembly of the first living cells. Nonequilibrium thermodynamics has achieved lifelike self-organization in diverse physical systems, but has not yet met the open-ended evolution of living organisms. Here, I look for the emergence of an artificial-life code in a nonequilibrium physical system undergoing self-organization. I devise a toy model where the onset of self-replication of a quantum artificial organism (a chain of lambda systems) is owing to single-photon pulses added to a zero-temperature environment. I find that spontaneous mutations during self-replication are unavoidable in this model, due to rare but finite absorption of off-resonant photons. I also show that the replication probability is proportional to the absorbed work from the photon, thereby fulfilling a dissipative adaptation (a thermodynamic mechanism underlying lifelike self-organization). These results hint at self-replication as the scenario where dissipative adaptation (pointing towards convergence) coexists with open-ended evolution (pointing towards divergence).


Author(s):  
Thomas Glonek

AbstractHow life began still eludes science life, the initial progenote in the context presented herein, being a chemical aggregate of primordial inorganic and organic molecules capable of self-replication and evolution into ever increasingly complex forms and functions.Presented is a hypothesis that a mineral scaffold generated by geological processes and containing polymerized phosphate units was present in primordial seas that provided the initiating factor responsible for the sequestration and organization of primordial life’s constituents. Unlike previous hypotheses proposing phosphates as the essential initiating factor, the key phosphate described here is not a polynucleotide or just any condensed phosphate but a large (in the range of at least 1 kilo-phosphate subunits), water soluble, cyclic metaphosphate, which is a closed loop chain of polymerized inorganic phosphate residues containing only phosphate middle groups. The chain forms an intrinsic 4-phosphate helix analogous to its structure in Na Kurrol’s salt, and as with DNA, very large metaphosphates may fold into hairpin structures. Using a Holliday-junction-like scrambling mechanism, also analogous to DNA, rings may be manipulated (increased, decreased, exchanged) easily with little to no need for additional energy, the reaction being essentially an isomerization.A literature review is presented describing findings that support the above hypothesis. Reviewed is condensed phosphate inorganic chemistry including its geological origins, biological occurrence, enzymes and their genetics through eukaryotes, polyphosphate functions, circular polynucleotides and the role of the Holliday junction, previous biogenesis hypotheses, and an Eoarchean Era timeline.


Sign in / Sign up

Export Citation Format

Share Document