scholarly journals Development of High Strength Valve Spring Steel with Excellent Fatigue Life Performance.

Author(s):  
Nao YOSHIHARA ◽  
Takeshi KURODA ◽  
Hitoshi SATOH ◽  
Nobuhiko IBARAKI

The paper handles the fatigue and failing analysis of serial shot-peened leaf springs of cumbersome vehicles emphasizing on the impact of shot peening on fatigue life, coping with automotive leaf springs, the shot peening method turns into an important step in production.In the situation of leaf spring suspensions, however, asystematic research of the effect of shot peening about fatigue life isstill required. Experimental stress-life curves are determined with the aid of the usage of investigating clean specimen subjected to shot peening. those test consequences are as compared to corresponding ones identified from cyclic three-point test on shot peened serial leaf springs in order to show the influence of applied heat treatment and shot peening approach on fatigue existence of high-strength used to get leaf spring manufacturing, reliant on the load level. Analyses are performed to explain the effects resulting from shot peening practice on the surface features of the high-strength spring steel under examination. The evaluation of fatigue results shows that almost no life improvement due to production highlighting the importance for mutual variation in parameters of shot peening and thermal treatment so that there is sufficient progress in life


Alloy Digest ◽  
1998 ◽  
Vol 47 (5) ◽  

Abstract Inland DuraSpring is a high-strength microalloyed spring steel for use in high stress coil springs for automobile and light truck suspension systems. This bar product offers significant improvements in tensile strength, fatigue properties, and fracture toughness compared to conventional spring steels. This datasheet provides information on composition, hardness, and tensile properties as well asfracture toughness and fatigue. Filing Code: SA-496. Producer or source: Ispat Inland Inc.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1421
Author(s):  
Armin Yousefi ◽  
Saman Jolaiy ◽  
Reza Hedayati ◽  
Ahmad Serjouei ◽  
Mahdi Bodaghi

Bonded patches are widely used in several industry sectors for repairing damaged plates, cracks in metallic structures, and reinforcement of damaged structures. Composite patches have optimal properties such as high strength-to-weight ratio, easiness in being applied, and high flexibility. Due to recent rapid growth in the aerospace industry, analyses of adhesively bonded patches applicable to repairing cracked structures have become of great significance. In the present study, the fatigue behavior of the aluminum alloy, repaired by a double-sided glass/epoxy composite patch, is studied numerically. More specifically, the effect of applying a double-sided composite patch on the fatigue life improvement of a damaged aluminum 6061-T6 is analyzed. 3D finite element numerical modeling is performed to analyze the fatigue performance of both repaired and unrepaired aluminum plates using the Abaqus package. To determine the fatigue life of the aluminum 6061-T6 plate, first, the hysteresis loop is determined, and afterward, the plastic strain amplitude is calculated. Finally, by using the Coffin-Manson equation, fatigue life is predicted and validated against the available experimental data from the literature. Results reveal that composite patches increase the fatigue life of cracked structures significantly, ranging from 55% to 100% for different applied stresses.


2018 ◽  
Vol 112 ◽  
pp. 106-116 ◽  
Author(s):  
Miguel A. Vicente ◽  
Dorys C. González ◽  
Jesús Mínguez ◽  
Manuel A. Tarifa ◽  
Gonzalo Ruiz ◽  
...  

2018 ◽  
Vol 165 ◽  
pp. 16007
Author(s):  
Martin Garcia ◽  
Claudio A. Pereira Baptista ◽  
Alain Nussbaumer

In this study, the multiaxial fatigue strength of full-scale transversal attachment is assessed and compared to original experimental results and others found in the literature. Mild strength S235JR steel is used and an exploratory investigation on the use of high strength S690QL steel and the effect of non-proportional loading is presented. The study focuses on non-load carrying fillet welds as commonly used in bridge design and more generally between main girders and struts. The experimental program includes 33 uniaxial and multiaxial fatigue tests and was partially carried out on a new multiaxial setup that allows proportional and non-proportional tests in a typical welded detail. The fatigue life is then compared with estimations obtained from local approaches with the help of 3D finite element models. The multiaxial fatigue life assessment with some of the well-known local approaches is shown to be suited to the analysis under multiaxial stress states. The accuracy of each models and approaches is compared to the experimental values considering all the previously cited parameters.


2008 ◽  
Vol 43 ◽  
pp. 17-22 ◽  
Author(s):  
Matthias Merzkirch ◽  
Kay André Weidenmann ◽  
Eberhard Kerscher ◽  
Detlef Löhe

A possibility to increase both stiffness and strength of aluminium-based structures for the application in lightweight profiles for vehicle space frames is the use of composite extrusions in which high-strength metallic reinforcements are incorporated. Within the scope of the present investigations, composite-extruded profiles with wire-reinforcements made of austenitic spring steel 1.4310 (X10CrNi18-8), in an aluminium matrix AA6060 (AlMgSi0.5), which were exposed to different corrosive media for different times, were characterised in terms of the debonding shear strength using the push-out-technique. The formation of a galvanic couple could be conceived mathematically in regard of terms describing the formation of a shear-impeding layer and the corrosive attack. Thereby the parameters for the different media could be determined.


2018 ◽  
Vol 165 ◽  
pp. 21002 ◽  
Author(s):  
Antonio J. Abdalla ◽  
Douglas Santos ◽  
Getúlio Vasconcelos ◽  
Vladimir H. Baggio-Scheid ◽  
Deivid F. Silva

In this work 300M steel samples is used. This high-strength steel is used in aeronautic and aerospace industry and other structural applications. Initially the 300 M steel sample was submitted to a heat treatment to obtain a bainític structure. It was heated at 850 °C for 30 minutes and after that, cooled at 300 °C for 60 minutes. Afterwards two types of surface treatments have been employed: (a) using low-power laser CO2 (125 W) for introducing carbon into the surface and (b) plasma nitriding at a temperature of 500° C for 3 hours. After surface treatment, the metallographic preparation was carried out and the observations with optical and electronic microscopy have been made. The analysis of the coating showed an increase in the hardness of layer formed on the surface, mainly, among the nitriding layers. The mechanical properties were analyzed using tensile and fatigue tests. The results showed that the mechanical properties in tensile tests were strongly affected by the bainitic microstructure. The steel that received the nitriding surface by plasma treatment showed better fatigue behavior. The results are very promising because the layer formed on steel surface, in addition to improving the fatigue life, still improves protection against corrosion and wear.


Sign in / Sign up

Export Citation Format

Share Document