scholarly journals Optimal Design of Barangay Rogongon Microgrid System

Author(s):  
Anacita Palma Tahud ◽  
Samuelle Jane Dahili Estoperez ◽  
Jeryl Manlupig Wayco ◽  
Noel Regis Estoperez

In this research, specifically an electrical distribution system design of the proposed microgrid in a remote barangay, Brgy. Rogongon, in Iligan City, is presented. Due to limited access and limited-service electrical utility grid, about 10 % of the Philippine household population at a development disadvantage. Through the project, potential sites for hydropower and solar PV installations as well as distribution pathways were identified using Geographic Information (GIS). Household surveys were conducted to obtain the 5 yr projected load demand and the results are presented in thematic maps. The electrical distribution system of the microgrid was designed and simulated using Just Another Electrical Distribution Network Software (JAED.NS). The system simulation showed an acceptable 5.94 % estimated total system loss which implies that the designed electrical distribution system is feasible.

2019 ◽  
Vol 11 (6) ◽  
pp. 1607 ◽  
Author(s):  
Wilson Pavón ◽  
Esteban Inga ◽  
Silvio Simani

This paper proposes a three-layer model to find the optimal routing of an underground electrical distribution system, employing the PRIM algorithm as a graph search heuristic. In the algorithm, the first layer handles transformer allocation and medium voltage network routing, the second layer deploys the low voltage network routing and transformer sizing, while the third presents a method to allocate distributed energy resources in an electric distribution system. The proposed algorithm routes an electrical distribution network in a georeferenced area, taking into account the characteristics of the terrain, such as streets or intersections, and scenarios without squared streets. Moreover, the algorithm copes with scalability characteristics, allowing the addition of loads with time. The model analysis discovers that the algorithm reaches a node connectivity of 100%, satisfies the planned distance constraints, and accomplishes the optimal solution of underground routing in a distribution electrical network applied in a georeferenced area. Simulating the electrical distribution network tests that the voltage drop is less than 2% in the farthest node.


Author(s):  
Parasa Sushma Devi ◽  
Dasari Ravi Kumar ◽  
Kiran Chakravarthula

<p>Studies on load flow in electrical distribution system have always been an area of interest for research from the previous few years. Various approaches and techniques are brought into light for load flow studies within the system and simulation tools are being used to work out on varied characteristics of system. This study concentrates on these approaches and the improvements made to the already existing techniques considering time and the algorithms complexity. Also, the paper explains the network reconfiguration (NR) techniques considered in reconfiguring radial distribution network (RDN) to reduce power losses in distribution system and delivers an approach to how various network reconfiguration techniques support loss reduction and improvement of reliability in the electrical distribution network.</p>


Author(s):  
Paola Mantilla-Perez ◽  
Xavier Dominguez ◽  
Nuria Gimenez ◽  
Bassam Mohamed ◽  
Manuel Alberto Diaz Millan ◽  
...  

2016 ◽  
Vol 856 ◽  
pp. 331-336
Author(s):  
Rexhep Shaqiri

This paper contains a strategy to minimize the power losses in the electrical distribution network of Kosovo. In order to develop the strategy, a model was constructed to simulate an electrical distribution network, and different parameters were included that helped in estimation of the technical power losses in the medium voltage (MV) distribution network. The main objective of this paper is to present approach to minimize technical and non-technical losses in power systems. The analysis of the Kosovo electric power system was performed by means of PSS/E 3.3 software. The results indicate options for reduction of the loses by replacement of old type of transformers and preparation of the MV system for upgrade and change the voltage level from 10 kV to 20 kV. As a first step new 110/10kV transformers can be installed, designed to be reconnected in the future to 110/20kV.


Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 55
Author(s):  
Busra Uzum ◽  
Ahmet Onen ◽  
Hany M. Hasanien ◽  
S. M. Muyeen

In order to meet the electricity needs of domestic or commercial buildings, solar energy is more attractive than other renewable energy sources in terms of its simplicity of installation, less dependence on the field and its economy. It is possible to extract solar energy from photovoltaic (PV) including rooftop, ground-mounted, and building integrated PV systems. Interest in rooftop PV system applications has increased in recent years due to simple installation and not occupying an external area. However, the negative effects of increased PV penetration on the distribution system are troublesome. The power loss, reverse power flow (RPF), voltage fluctuations, voltage unbalance, are causing voltage quality problems in the power network. On the other hand, variations in system frequency, power factor, and harmonics are affecting the power quality. The excessive PV penetration also the root cause of voltage stability and has an adverse effect on protection system. The aim of this article is to extensively examines the impacts of rooftop PV on distribution network and evaluate possible solution methods in terms of the voltage quality, power quality, system protection and system stability. Moreover, it is to present a comparison of the advantages/disadvantages of the solution methods discussed, and an examination of the solution methods in which artificial intelligence, deep learning and machine learning based optimization and techniques are discussed with common methods.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1238
Author(s):  
Supanat Chamchuen ◽  
Apirat Siritaratiwat ◽  
Pradit Fuangfoo ◽  
Puripong Suthisopapan ◽  
Pirat Khunkitti

Power quality disturbance (PQD) is an important issue in electrical distribution systems that needs to be detected promptly and identified to prevent the degradation of system reliability. This work proposes a PQD classification using a novel algorithm, comprised of the artificial bee colony (ABC) and the particle swarm optimization (PSO) algorithms, called “adaptive ABC-PSO” as the feature selection algorithm. The proposed adaptive technique is applied to a combination of ABC and PSO algorithms, and then used as the feature selection algorithm. A discrete wavelet transform is used as the feature extraction method, and a probabilistic neural network is used as the classifier. We found that the highest classification accuracy (99.31%) could be achieved through nine optimally selected features out of all 72 extracted features. Moreover, the proposed PQD classification system demonstrated high performance in a noisy environment, as well as the real distribution system. When comparing the presented PQD classification system’s performance to previous studies, PQD classification accuracy using adaptive ABC-PSO as the optimal feature selection algorithm is considered to be at a high-range scale; therefore, the adaptive ABC-PSO algorithm can be used to classify the PQD in a practical electrical distribution system.


Sign in / Sign up

Export Citation Format

Share Document