Computational Analysis of the Messenger RNA Variants Encoding Two Isoforms of the High-mobility Group box 1 Protein

2021 ◽  
Vol 30 (3) ◽  
pp. 243-252
Author(s):  
Luchezar Karagyozov ◽  
◽  
Jordana Todorova ◽  

High-mobility group box 1 protein (HMGB1) is a multifunctional nonhistone chromosomal protein. This widespread nuclear protein has a dual function-in the nucleus - it binds DNA and participates in practically all DNA-dependent processes. On the other hand, the protein plays an important role in the extracellular matrix as an “alarmin”, which interacts with certain receptors and stimulates biochemical pathways, associated with carcinogenesis and metastasis. HMGB1 is a critical damage-associated molecular pattern molecule, has been implicated in several inflammatory diseases and cancer types. This universality makes it an attractive target for innovative therapeutic strategies in the treatment of various diseases. The updated database for the HMGB1 gene, encoding the high-mobility group box 1 protein, was used for computational analysis of the annotated mRNA splice variants. Results showed that five of the splice variants encode an HMGB1 protein, containing 215 amino acid residues. However, two of the splice variants encode a shorter HMGB1 protein with 158 residues. Presently, the existence of a shorter HMGB1 protein is not registered in the protein databanks. This inconsistency is not yet resolved.

2010 ◽  
Vol 37 (4) ◽  
pp. 766-775 ◽  
Author(s):  
JIE LI ◽  
HONGFU XIE ◽  
TING WEN ◽  
HONGBO LIU ◽  
WU ZHU ◽  
...  

Objective.To compare the expression of high mobility group box chromosomal protein 1 (HMGB1) and the modulating effects on its downstream cytokines in patients with systemic lupus erythematosus (SLE) and healthy controls.Methods.HMGB1 concentrations in serum from SLE patients and controls were measured by immunoblot analysis. HMGB1 messenger RNA (mRNA) expression in peripheral blood mononuclear cells (PBMC) was detected by real-time reverse transcription–polymerase chain reaction. Immunofluorescence assay was employed to examine the translocation of HMGB1 in monocytes after endotoxin stimulation. Release of tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6) by PBMC after rHMGB1 stimulation was also measured.Results.Serum HMGB1 levels and HMGB1 mRNA expressions in PBMC were elevated in SLE patients compared with controls. A positive correlation was demonstrated between HMGB1 concentrations and SLE Disease Activity Index. There was an inverse correlation between HMGB1 levels and C4 and C3 concentrations in SLE patients. HMGB1 concentrations were higher in patients with vasculitis and myositis. Lipopolysaccharide stimulated a temporarily elevated release of HMGB1 in SLE patients compared with controls. The pattern and localization of HMGB1 staining in monocytes were similar in both groups. After stimulation with rHMGB1, TNF-α level decreased but IL-6 level increased in SLE patients compared with controls.Conclusion.Our findings suggest that increased serum levels of HMGB1 in SLE may be associated with lupus disease activity. The altered production of TNF-α and IL-6 in response to rHMGB1 stimulation may participate in the disruption of cytokine homeostasis in SLE.


2019 ◽  
Vol 20 (14) ◽  
pp. 1474-1485 ◽  
Author(s):  
Eyaldeva C. Vijayakumar ◽  
Lokesh Kumar Bhatt ◽  
Kedar S. Prabhavalkar

High mobility group box-1 (HMGB1) mainly belongs to the non-histone DNA-binding protein. It has been studied as a nuclear protein that is present in eukaryotic cells. From the HMG family, HMGB1 protein has been focused particularly for its pivotal role in several pathologies. HMGB-1 is considered as an essential facilitator in diseases such as sepsis, collagen disease, atherosclerosis, cancers, arthritis, acute lung injury, epilepsy, myocardial infarction, and local and systemic inflammation. Modulation of HMGB1 levels in the human body provides a way in the management of these diseases. Various strategies, such as HMGB1-receptor antagonists, inhibitors of its signalling pathway, antibodies, RNA inhibitors, vagus nerve stimulation etc. have been used to inhibit expression, release or activity of HMGB1. This review encompasses the role of HMGB1 in various pathologies and discusses its therapeutic potential in these pathologies.


2021 ◽  
pp. 194589242199814
Author(s):  
Soo-Hyung Lee ◽  
Jae Hoon Cho ◽  
Joo-Hoo Park ◽  
Jung-Sun Cho ◽  
Heung-Man Lee

Background Chronic rhinosinusitis is involved in myofibroblast differentiation and extracellular matrix (ECM) accumulation. High mobility group box chromosomal protein 1 (HMGB-1) is known to stimulate lung fibroblast to produce ECM in lung fibrosis. The aim of this study was to investigate whether HMGB-1 induces myofibroblast differentiation and ECM production in nasal fibroblasts and to identify the signal pathway. Methods Human nasal fibroblasts were cultured. After stimulation with HMGB-1, expressions of α-smooth muscle actin (α-SMA) and fibronectin were determined by real-time PCR and western blot. Total collagen was measured by Sircol assay. To investigate signal pathway, various signal inhibitors and RAGE siRNA were used. Results HMGB-1 increased α-SMA and fibronectin in mRNA and protein levels. It also increased collagen production. RAGE siRNA inhibited HMGB-1-induced α-SMA and fibronectin, and production of collagen. Furthermore, the inhibitors of RAGE downstream molecules such as p38, JNK and AP-1 also blocked the HMGB-1-induced effects. Conclusions HMGB-1 induces myofibroblast differentiation and ECM production in nasal fibroblast, which is mediated by RAGE, p38, JNK and AP-1 signal pathway. These results suggest that HMGB-1 may play an important role in tissue remodeling during chronic rhinosinusitis progression.


PLoS ONE ◽  
2013 ◽  
Vol 8 (5) ◽  
pp. e63073 ◽  
Author(s):  
Yuki Kuroiwa ◽  
Yoichi Takakusagi ◽  
Tomoe Kusayanagi ◽  
Kouji Kuramochi ◽  
Takahiko Imai ◽  
...  

1979 ◽  
Vol 183 (3) ◽  
pp. 657-662 ◽  
Author(s):  
P D Cary ◽  
K V Shooter ◽  
G H Goodwin ◽  
E W Johns ◽  
J Y Olayemi ◽  
...  

The interaction of the non-histone chromosomal protein HMG (high-mobility group) 1 with histone H1 subfractions was investigated by equilibrium sedimentation and n.m.r. sectroscopy. In contrast with a previous report [Smerdon & Isenberg (1976) Biochemistry 15, 4242–4247], it was found, by using equilibrium-sedimentation analysis, that protein HMG 1 binds to all three histone H1 subfractions CTL1, CTL2, and CTL3, arguing against there being a specific interaction between protein HMG 1 and only two of the subfractions, CTL1 and CTL2. Raising the ionic strength of the solutions prevents binding of protein HMG 1 to total histone H1 and the three subfractions, suggesting that the binding in vitro is simply a non-specific ionic interaction between acidic regions of the non-histone protein and the basic regions of the histone. Protein HMG 1 binds to histone H5 also, supporting this view. The above conclusions are supported by n.m.r. studies of protein HMG 1/histone H1 subfraction mixtures. When the two proteins were mixed, there was little perturbation of the n.m.r. spectra and there was no evidence for specific interaction of protein HMG 1 with any of the subfractions. It therefore remains an open question as to whether protein HMG 1 and histone H1 are complexed together in chromatin.


2022 ◽  
Vol 20 ◽  
Author(s):  
Fathimath Zaha Ikram ◽  
Alina Arulsamy ◽  
Thaarvena Retinasamy ◽  
Mohd. Farooq Shaikh

Background: High mobility group box 1 (HMGB1) protein is a damage-associated molecular pattern (DAMP) molecule that plays an important role in the repair and regeneration of tissue injury. It also acts as a pro-inflammatory cytokine through the activation of toll-like receptor 4 (TLR4) and receptor for advanced glycation end products (RAGE), to elicit the neuroinflammatory response. HMGB1 may aggravate several cellular responses which may lead to pathological inflammation and cellular death. Thus, there have been a considerable amount of research into the pathological role of HMGB1 in diseases. However, whether the mechanism of action of HMGB1 is similar in all neurodegenerative disease pathology remains to be determined. Objective: Therefore, this systematic review aimed to critically evaluate and elucidate the role of HMGB1 in the pathology of neurodegeneration based on the available literature. Methods: A comprehensive literature search was performed on four databases; EMBASE, PubMed, Scopus, and CINAHL Plus. Results: A total of 85 articles were selected for critical appraisal, after subjecting to the inclusion and exclusion criteria in this study. The selected articles revealed that HMGB1 levels were found elevated in most neurodegeneration except in Huntington’s disease and Spinocerebellar ataxia, where the levels were found decreased. This review also showcased that HMGB1 may act on distinctive pathways to elicit its pathological response leading to the various neurodegeneration processes/diseases. Conclusion: While there have been promising findings in HMGB1 intervention research, further studies may still be required before any HMGB1 intervention may be recommended as a therapeutic target for neurodegenerative diseases.


2014 ◽  
Vol 26 (4) ◽  
pp. 777-783 ◽  
Author(s):  
Young Bok Ko ◽  
Boh-Ram Kim ◽  
Sang Lyun Nam ◽  
Jung Bo Yang ◽  
Sang-Yoon Park ◽  
...  

2019 ◽  
Vol 316 (1) ◽  
pp. L280-L290 ◽  
Author(s):  
Sisi Chen ◽  
Guangyuan Yu ◽  
Jun Xie ◽  
Wei Tang ◽  
Leiqiong Gao ◽  
...  

The type 2 immune response, induced by infection of respiratory syncytial virus (RSV), has been linked to asthma development, but it remains unclear how the response is initiated. Here, we reported that the high-mobility group box-1 (HMGB1) protein promotes the type 2 response in the later stage of RSV infection. In mice, we found that type 2 cytokines were elevated in the later stages, which were strongly diminished after administration of anti-HMGB1 antibodies. Further investigation revealed that HMGB1 expression was localized to CC10+ club cells in the lung. In the clinic, levels of HMGB1 in nasopharyngeal aspirates in hospitalized infants with RSV bronchiolitis [median (interquartile range) 161.20 ng/ml (68.06–221.30)] were significantly higher than those without lower respiratory tract infections [21.94 ng/ml (12.12–59.82); P < 0.001]. Moreover, higher levels of HMGB1 correlated with clinical severity. These results reveal a link between viral infection and the asthma-like type 2 responses that are associated with long-term consequences.


2008 ◽  
Vol 108 (3) ◽  
pp. c194-c201 ◽  
Author(s):  
Fumihiko Sato ◽  
Shoichi Maruyama ◽  
Hiroki Hayashi ◽  
Izumi Sakamoto ◽  
Shingo Yamada ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document