scholarly journals Analysis of the Queuing System for the Indonesian Islamic Bank (BSI) Bengkulu Branch

2022 ◽  
Vol 3 (1) ◽  
pp. 70-80
Author(s):  
Angga Putra Pertama ◽  
Sulisti Afriani ◽  
Ida Ayu Made Er Meytha Gayatri

The purpose of this study is to determine the average level of customer arrivals and the average service time of customers in the queue. The analytical model used in this study is a multi-channel single-phase queuing theory analysis with a mathematical formula. The queuing process is a process related to the arrival of the customer to a queuing system, then waiting in the queue until the waiter selects the customer according to the service discipline, and finally the customer leaves the queuing system after the service is finished. At Bank Syariah Indonesia (BSI) KC Bengkulu S. Parman 1 there are 5 tellers provided to serve customers who will make deposits, withdrawals and cash transfers. Queues that occur at the optimal service level can be obtained by the performance of the queuing system with the calculation results, namely, the average number of customers in the queue (nq) 31.88 customers, customers in the total system 33.08 people, the average time in the queue 0, 000767 and the total system time is 0.034097 or 2 minutes. Thus, customers do not take too long to make transactions. With the number of tellers as many as five people, there is a long waiting time for customers (Wq) in the queue, which is 0.02777 hours or 2 minutes and the average number of customers in the queue (Ls) is 2 people..

2017 ◽  
Vol 13 (4-1) ◽  
pp. 412-415
Author(s):  
Ahmad Ridhuan Hamdan ◽  
Ruzana Ishak ◽  
Mohd Fais Usop

Queuing Theory is a branch of knowledge in operation research that concerning the analysis of queues when a customer arrives at a service centre and shall queue in a line to get some service. The theory pays attention to how organizations can serve a large number of customers who demand a quality services and a queue of customers waiting to be served. Eventually, the store owners have to attend to large numbers of customers at a time have attempted to measure and manage queues to reduce the customer procession time. Besides, to increase sales and profit, productivity and operation efficiency, satisfaction levels and customer loyalty in using the service provided. In line to the situation, this study is to determine the effectiveness of the waiting line using Queuing Theory at cooperative-mart. Until today, no research conducted about school cooperatives-mart to observe and solve the massive inflow of customers at lines at a given time especially during lunch hour. The purposes of this study are to determine the customer congestion at the payment counter and to propose the effective queuing system at Cooperative-mart. Waiting and services times of customers at cooperative-mart is studied in three times period that to be considered as peak hours in two types of counter which are for male and female.  Data collection was observed by using queuing theory and the M/M/1/∞/∞ queuing model has been implemented.  The results show that for optimum service level, the counter must be changed from one to two counters each side.  The summary and finding of the study shall be used as guideline for the management of cooperative-mart in deciding improvement of its operation. 


Author(s):  
سعيد علي حسن، ومحمد رضا كابلي سعيد علي حسن، ومحمد رضا كابلي

A mobile phone is a portable electronic device that uses a network of cell sites and supports SMS services for text messaging and MMS for photos and videos. This paper focuses on mobile's sales points to predict and economically schedule numbers of sales executives for highest customer satisfaction. Primary goal is to determine the best number of opened workstations to decrease customers waiting time. Data were collected from Qmatic system at a sales point in Jeddah for 2011. Simulation was done using Arena. Required data were average number of tickets taken, average service time, total number of customers served, total number of customers not show and number of resources. The best scenario attained a net profit of SR 1,509,506 with total system time of 453 seconds which was decreased by 72%. Number of unsatisfied customers was decreased by 77%, number of satisfied customers increased by 374% and net profit increased by 6.2% despite increasing number of employees.


2021 ◽  
Vol 12 (7) ◽  
pp. 1774-1784
Author(s):  
Girin Saikia ◽  
Amit Choudhury

The phenomena are balking can be said to have been observed when a customer who has arrived into queuing system decides not to join it. Reverse balking is a particular type of balking wherein the probability that a customer will balk goes down as the system size goes up and vice versa. Such behavior can be observed in investment firms (insurance company, Mutual Fund Company, banks etc.). As the number of customers in the firm goes up, it creates trust among potential investors. Fewer customers would like to balk as the number of customers goes up. In this paper, we develop an M/M/1/k queuing system with reverse balking. The steady-state probabilities of the model are obtained and closed forms of expression of a number of performance measures are derived.


Author(s):  
Orimoloye Segun Michael

The queuing theory is the mathematical approach to the analysis of waiting lines in any setting where arrivals rate of the subject is faster than the system can handle. It is applicable to the health care setting where the systems have excess capacity to accommodate random variation. Therefore, the purpose of this study was to determine the waiting, arrival and service times of patients at AAUA Health- setting and to model a suitable queuing system by using simulation technique to validate the model. This study was conducted at AAUA Health- Centre Akungba Akoko. It employed analytical and simulation methods to develop a suitable model. The collection of waiting time for this study was based on the arrival rate and service rate of patients at the Outpatient Centre. The data was calculated and analyzed using Microsoft Excel. Based on the analyzed data, the queuing system of the patient current situation was modelled and simulated using the PYTHON software. The result obtained from the simulation model showed that the mean arrival rate of patients on Friday week1 was lesser than the mean service rate of patients (i.e. 5.33> 5.625 (λ > µ). What this means is that the waiting line would be formed which would increase indefinitely; the service facility would always be busy. The analysis of the entire system of the AAUA health centre showed that queue length increases when the system is very busy. This work therefore evaluated and predicted the system performance of AAUA Health-Centre in terms of service delivery and propose solutions on needed resources to improve the quality of service offered to the patients visiting this health centre.


2019 ◽  
Vol 2 (1) ◽  
pp. 1-12
Author(s):  
Doddy - Lombardo ◽  
Edward Rosyidi

ABSTRACTION   PT Jasa Marga (Persero), Tbk is a company engaged in the development and movement of toll roads having a Current, Safe and Comfortable Quality Policy increasingly demanded to improve the quality of its services. The number of substations that have been repaired at the Kuningan Toll Gate 2 against 4 substations cannot receive currents that increase during rush hour. The queue exceeds the service standards set by the government for a maximum of 5 vehicles for each substation. In this study used the FIFO Queue Model and Distribution testing using the Promodel 7.0 Version of Student Software to find out the distribution of arrival rate and service level data. To test the average value is used the One-way ANOVA test which was previously carried out also the test of adequacy, uniformity and normality of the data. Data collection is taken when a long queue is carried out at the Toll Gate. After passing the test, the next data ? is equal to 2,004 vehicles / hour and ? is = 417 vehicles / hour with Service Time = 8.63 seconds / vehicle, if it is done with Queuing Theory. Results Processing data with queuing theory obtained N (optimal) = 6 and n (Number of vehicles in the system) = 5 vehicles, q (Number of vehicles in queue) = 4 vehicles, d (Time of vehicle in system) = 43.37 seconds, w (Time of vehicle in queue) = 34.74 seconds. The results of data preparation are further processed to obtain optimal Employee Scheduling using tables so that there will be 3 employees in shift 1, 9 in Shift 2 and 2 in shift 3. on weekdays and 3 people on shift 1, 3 on Shift 2 and 2 on shift 3 on holidays. Keywords: Queue Method, Toll Gate, Planning, Optimization                                                                                     


2011 ◽  
Vol 2 (4) ◽  
pp. 75-88
Author(s):  
Veena Goswami ◽  
G. B. Mund

This paper analyzes a discrete-time infinite-buffer Geo/Geo/2 queue, in which the number of servers can be adjusted depending on the number of customers in the system one at a time at arrival or at service completion epoch. Analytical closed-form solutions of the infinite-buffer Geo/Geo/2 queueing system operating under the triadic (0, Q N, M) policy are derived. The total expected cost function is developed to obtain the optimal operating (0, Q N, M) policy and the optimal service rate at minimum cost using direct search method. Some performance measures and sensitivity analysis have been presented.


2005 ◽  
Vol 42 (01) ◽  
pp. 223-234 ◽  
Author(s):  
Offer Kella ◽  
Bert Zwart ◽  
Onno Boxma

We consider an M/G/1 queue that is idle at time 0. The number of customers sampled at an independent exponential time is shown to have the same geometric distribution under the preemptive-resume last-in-first-out and the processor-sharing disciplines. Hence, the marginal distribution of the queue length at any time is identical for both disciplines. We then give a detailed analysis of the time until the first departure for any symmetric queueing discipline. We characterize its distribution and show that it is insensitive to the service discipline. Finally, we study the tail behavior of this distribution.


1992 ◽  
Vol 29 (4) ◽  
pp. 967-978 ◽  
Author(s):  
Rhonda Righter ◽  
J. George Shanthikumar

We show that using the FIFO service discipline at single server stations with ILR (increasing likelihood ratio) service time distributions in networks of monotone queues results in stochastically earlier departures throughout the network. The converse is true at stations with DLR (decreasing likelihood ratio) service time distributions. We use these results to establish the validity of the following comparisons:(i) The throughput of a closed network of FIFO single-server queues will be larger (smaller) when the service times are ILR (DLR) rather than exponential with the same means.(ii) The total stationary number of customers in an open network of FIFO single-server queues with Poisson external arrivals will be stochastically smaller (larger) when the service times are ILR (DLR) rather than exponential with the same means.We also give a surprising counterexample to show that although FIFO stochastically maximizes the number of departures by any time t from an isolated single-server queue with IHR (increasing hazard rate, which is weaker than ILR) service times, this is no longer true for networks of more than one queue. Thus the ILR assumption cannot be relaxed to IHR.Finally, we consider multiclass networks of exponential single-server queues, where the class of a customer at a particular station determines its service rate at that station, and show that serving the customer with the highest service rate (which is SEPT — shortest expected processing time first) results in stochastically earlier departures throughout the network, among all preemptive work-conserving policies. We also show that a cµ rule stochastically maximizes the number of non-defective service completions by any time t when there are random, agreeable, yields.


1987 ◽  
Vol 19 (1) ◽  
pp. 202-218 ◽  
Author(s):  
Richard R. Weber ◽  
Shaler Stidham

We prove a monotonicity result for the problem of optimal service rate control in certain queueing networks. Consider, as an illustrative example, a number of ·/M/1 queues which are arranged in a cycle with some number of customers moving around the cycle. A holding cost hi(xi) is charged for each unit of time that queue i contains xi customers, with hi being convex. As a function of the queue lengths the service rate at each queue i is to be chosen in the interval , where cost ci(μ) is charged for each unit of time that the service rate μis in effect at queue i. It is shown that the policy which minimizes the expected total discounted cost has a monotone structure: namely, that by moving one customer from queue i to the following queue, the optimal service rate in queue i is not increased and the optimal service rates elsewhere are not decreased. We prove a similar result for problems of optimal arrival rate and service rate control in general queueing networks. The results are extended to an average-cost measure, and an example is included to show that in general the assumption of convex holding costs may not be relaxed. A further example shows that the optimal policy may not be monotone unless the choice of possible service rates at each queue includes 0.


2014 ◽  
Vol 556-562 ◽  
pp. 3849-3851
Author(s):  
Rong Hua Tan

The optimization Problem of queuing system is an important research subject in the queuing system.There are two ways to solve this problem:one is the traditional theoretical analysis, the other is the application of computer simulation. This thesis introduces the queuing theory and the simulation technique of discrete event system, including fundamental conceptions, methods, performance index and classical model of queuing system, as well as the definition of simulation and the procedure of the simulation of discrete event system. And procedure and parameters set of general modeling methods are analyzed.


Sign in / Sign up

Export Citation Format

Share Document