scholarly journals Theoretical methods for measuring chemo-physical properties of nucleic acids during the radicalization of dna and the incidence of cancer

2019 ◽  
Vol 32 (01) ◽  
pp. 01-12
Author(s):  
Mehdi Imanzadeh ◽  
Karim Zare ◽  
Majid Monajjemi ◽  
Ali Shamel

One of cases considered for diagnosing DNA damages is diagnosing DNA probable damages against oxidizing agents, including oxidizing chemicals and various incident rays which cause the bases in the DNA to be oxidized and especially bases G in the DNA sequence which is more easily oxidized than the other bases. Therefore, the main objective of this comprehensive survey is to provide relevant information on measure physical chemical properties of nucleic acids during DNA radicalization and incidence of cancer using theoretical methods. The aim of the present study is to examine the single-stranded NBO with sequences of GG, CG, AA AG AC: AT CT GT TT followed by the levels of energy and form of orbital LUMO and HOMO obtained from Gaussian computations for above double-stranded sequences. Our results showed that form B genetic material is the most stable structure against physical and chemical agents. Only the number of molecular population and the levels of molecular dynamic vibration and molecular thermochemistry such as enthalpie and entropie are temperature independent. In addition to this, the gap between the layers and the potential and energy needed to oxidize the components in the two strands of DNA and its optimum structure will not change with temperature. Optimum conditions on DNA and its bonds are the temperature of 37 ° C and pH is 7 to 8.7. DNA has form B and the rate of physical protection is the highest.

Life ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 346
Author(s):  
Kevin G Devine ◽  
Sohan Jheeta

Modern terran life uses several essential biopolymers like nucleic acids, proteins and polysaccharides. The nucleic acids, DNA and RNA are arguably life’s most important, acting as the stores and translators of genetic information contained in their base sequences, which ultimately manifest themselves in the amino acid sequences of proteins. But just what is it about their structures; an aromatic heterocyclic base appended to a (five-atom ring) sugar-phosphate backbone that enables them to carry out these functions with such high fidelity? In the past three decades, leading chemists have created in their laboratories synthetic analogues of nucleic acids which differ from their natural counterparts in three key areas as follows: (a) replacement of the phosphate moiety with an uncharged analogue, (b) replacement of the pentose sugars ribose and deoxyribose with alternative acyclic, pentose and hexose derivatives and, finally, (c) replacement of the two heterocyclic base pairs adenine/thymine and guanine/cytosine with non-standard analogues that obey the Watson–Crick pairing rules. This manuscript will examine in detail the physical and chemical properties of these synthetic nucleic acid analogues, in particular on their abilities to serve as conveyors of genetic information. If life exists elsewhere in the universe, will it also use DNA and RNA?


2012 ◽  
Vol 10 (3) ◽  
pp. 785-801 ◽  
Author(s):  
Jochen Pauwels ◽  
Ann Schepdael

AbstractCarbon nanotubes are among the plethora of novel nanostructures developed since the 1980s. Nanotubes have attracted considerable interest by the scientific community thanks to their extraordinary physical and chemical properties. Research areas have flourished in recent years and now include the nano-electronic, (bio)sensor and analytical field along with many others. This review covers applications of carbon nanotubes in capillary electrophoresis, capillary electrochromatography and microchip electrophoresis. First, carbon nanotubes and a range of electrophoretic techniques are briefly introduced and key references are mentioned. Next, a comprehensive survey of achievements in the field is presented and critically assessed. The merits and downsides of carbon nanotube addition to the various capillary electrophoretic modes are addressed. The different schemes for fabricating electrochromatographic stationary phases based on carbon nanotubes are discussed. Finally, some future perspectives are offered.


2017 ◽  
Vol 16 (2) ◽  
pp. 17-27
Author(s):  
Ann Susa Thomas ◽  
Sunny Joseph Kalayathankal ◽  
Joseph Varghese Kureethara

Graph Theory is one branch of Mathematics that laid the foundations of the structural studies in Chemistry. The fact that every molecule or compound can be represented as a network of vertices (elements) and edges (bonds) provoked the question of the predictability of the physical and chemical properties of molecules and compounds. Spectrum, π-electron energy, Spectral Radius etc. are predictable using graph theoretical methods. This is an introductory paper about spectrum and energy of molecular graphs.


2009 ◽  
Vol 8 (2) ◽  
pp. 69-74 ◽  
Author(s):  
Felisa Wolfe-Simon ◽  
Paul C.W. Davies ◽  
Ariel D. Anbar

AbstractAll known life requires phosphorus (P) in the form of inorganic phosphate (PO43−or Pi) and phosphate-containing organic molecules. Piserves as the backbone of the nucleic acids that constitute genetic material and as the major repository of chemical energy for metabolism in polyphosphate bonds. Arsenic (As) lies directly below P on the periodic table and so the two elements share many chemical properties, although their chemistries are sufficiently dissimilar that As cannot directly replace P in modern biochemistry. Arsenic is toxic because As and P are similar enough that organisms attempt this substitution. We hypothesize that ancient biochemical systems, analogous to but distinct from those known today, could have utilized arsenate in the equivalent biological role as phosphate. Organisms utilizing such ‘weird life’ biochemical pathways may have supported a ‘shadow biosphere’ at the time of the origin and early evolution of life on Earth or on other planets. Such organisms may even persist on Earth today, undetected, in unusual niches.


2019 ◽  
Vol 20 (1) ◽  
pp. 316-328 ◽  
Author(s):  
Alex T. Kararo ◽  
Rachel A. Colvin ◽  
Melanie M. Cooper ◽  
Sonia M. Underwood

The relationship between chemical structure and physical and chemical properties is essential to chemistry. Studies have shown that students have difficulty using structural representations to predict properties, which is not surprising because of the sequence of inferences that are required for sense-making. However, obtaining a nuanced model of students’ understanding depends on how information is elicited. This study investigated how the phrasing of the question prompt may elicit students’ understanding of structure–property relationships. Students were given a two-part assessment: (1) four multiple-choice questions assessing students’ self-reported abilities to predict structure–property relationships, and (2) three questions requiring students to predict, argue, and explain a boiling point trend. Two groups of students were selected to determine the sensitivity of the instrument (one with less explicit instruction of structure–property relationships and one with more explicit instruction). We found that Part I of the assessment was able to differentiate between these two groups of students. The group with more explicit instruction was further analyzed to determine how their prediction on a boiling point task connected to their arguments and explanations of the phenomenon. Even though 64% of students answered the boiling point ranking task correctly, the students typically provided less complete arguments as to why that structure had a higher boiling point. However, after scaffolding (i.e., providing relevant information for the phenomenon) and asking for an explanation, students’ responses began to include a much more mechanistic understanding, suggesting that having students provide explanations instead of constructing an argument would display their reasoning at a deeper level.


2019 ◽  
Vol 3 (5) ◽  
pp. 501-506 ◽  
Author(s):  
Adam M. Kabza ◽  
Brian E. Young ◽  
Nandini Kundu ◽  
Jonathan T. Sczepanski

The programmability of DNA/RNA-based molecular circuits provides numerous opportunities in the field of synthetic biology. However, the stability of nucleic acids remains a major concern when performing complex computations in biological environments. Our solution to this problem is l-(deoxy)ribose nucleic acids (l-DNA/RNA), which are mirror images (i.e. enantiomers) of natural d-nucleotides. l-oligonucleotides have the same physical and chemical properties as their natural counterparts, yet they are completely invisible to the stereospecific environment of biology. We recently reported a novel strand-displacement methodology for transferring sequence information between oligonucleotide enantiomers (which are incapable of base pairing with each other), enabling bio-orthogonal l-DNA/RNA circuits to be easily interfaced with living systems. In this perspective, we summarize these so-called ‘heterochiral’ circuits, provide a viewpoint on their potential applications in synthetic biology, and discuss key problems that must be solved before achieving the ultimate goal of the engineering complex and reliable functionality.


1966 ◽  
Vol 24 ◽  
pp. 101-110
Author(s):  
W. Iwanowska

In connection with the spectrophotometric study of population-type characteristics of various kinds of stars, a statistical analysis of kinematical and distribution parameters of the same stars is performed at the Toruń Observatory. This has a twofold purpose: first, to provide a practical guide in selecting stars for observing programmes, second, to contribute to the understanding of relations existing between the physical and chemical properties of stars and their kinematics and distribution in the Galaxy.


Author(s):  
Sydney S. Breese ◽  
Howard L. Bachrach

Continuing studies on the physical and chemical properties of foot-and-mouth disease virus (FMDV) have included electron microscopy of RNA strands released when highly purified virus (1) was dialyzed against demlneralized distilled water. The RNA strands were dried on formvar-carbon coated electron microscope screens pretreated with 0.1% bovine plasma albumin in distilled water. At this low salt concentration the RNA strands were extended and were stained with 1% phosphotungstic acid. Random dispersions of strands were recorded on electron micrographs, enlarged to 30,000 or 40,000 X and the lengths measured with a map-measuring wheel. Figure 1 is a typical micrograph and Fig. 2 shows the distributions of strand lengths for the three major types of FMDV (A119 of 6/9/72; C3-Rezende of 1/5/73; and O1-Brugge of 8/24/73.


Sign in / Sign up

Export Citation Format

Share Document