scholarly journals Comparative Study of Thyristor vs IGBT Based AC-DC Power Converter

2018 ◽  
Vol 17 (3) ◽  
pp. 89-102
Author(s):  
Md. Saiful Islam ◽  
Md. Rifat-Ul-Karim Shovon ◽  
Abdul Goffar Khan

This paper presents a comparative study of the application of Thyristor versus IGBT in AC-DC controlled power converter. Both simulation and practical experiment have been carried out to test the relationship between the average output voltage (Vdc) with firing angle (α, for Thyristor) and triggering pulse width (, for IGBT). Also the total harmonic distortion (THD) has been observed in both the cases. It is observed that IGBT based power converter introduces more harmonics in the system, in spite of more symmetrical output voltage wave shape.

2018 ◽  
Vol 54 (4) ◽  
pp. 235-245 ◽  
Author(s):  
Abdellahi Ba ◽  
Chighali Ould Ehssein ◽  
Mouhamed El Mamy Ould Mouhamed Mahmoud ◽  
Ouafae Hamdoun ◽  
Aroudam Elhassen

CYCLOTRON ◽  
2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Gita Arya Pratama ◽  
M. Krisna Ramadhani Ananta ◽  
Rio Winas Setia Budi ◽  
Belly Yan Dewantara ◽  
Iradiratu K

Abstrak— Paper ini menampilkan desain double boost converter yang mempunyai kemampuan menggandakan tegangan dua kali lipat berturut  turut beban DC yang menghasilkan tegangan output tambahan atau cadangan suplai pada beban. Pada umumnya double boost converter ini adalah konverter daya DC to Dc meningkatkan tegangan dari input (pasokan) ke output (beban) di desain menunjukkan bahwa dengan inputan sumber AC yang di searahkan terlebih dulu dengan converter penyearah berfungsi untuk mengatur kecepatan motor BLDC. Untuk pengontrolan pada beban motor menggunakan PI controller ( Proportional Integrator) dimana  parameter PI controller diperoleh dari trial eror. PI controller juga berfungsi memperbaiki gelombang keluaran dan kecepatan motor BLDC. Kata kunci : Motor BLDC, Double Boost Converter, PI controller. Abstract— This paper features a double boost converter design that has the ability to double the successive voltage in a DC load which results in an additional output voltage or supply reserve at load. In general, this double boost converter is a DC to Dc power converter increasing the voltage from input (supply) to output (load) in the design shows that the input AC source is aligned first with the rectifier converter to regulate the speed of the BLDC motor. To control the motor load using a PI controller (Proportional Integrator) where the PI controller parameter is obtained from the trial error. The PI controller also functions to improve the wave output and speed of the BLDC motor.


Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 81 ◽  
Author(s):  
Annamalai Thiruvengadam ◽  
Udhayakumar K

In this paper, an enhanced H-Bridge multilevel inverter is proposed with the sinusoidal tracking algorithm. The proposed multilevel inverter (MLI) consists of two half H-Bridges cascaded with two unidirectional switches, n direct current (DC) sources, and (n-2) number of bi-directional switches together to form an enhanced H-Bridge (EHB) multilevel inverter. The output voltage levels of an EHB MLI depends on the number of DC sources, the number of bi-directional switches, and the relationship between the magnitude of left-side and right-side DC sources. With the addition of DC sources, bidirectional switches, and employing the sinusoidal tracking algorithm, the performance of the inverter is enhanced with features like an increased number of levels and a reduction in the total harmonic distortion and switching losses. In all the modes of operation of the proposed inverter, only three switches are “ON”, so that conduction losses are less. The proposed enhanced H-Bridge MLI is simulated using MATLAB/Simulink R2017a, and is verified with the experimental result.


Author(s):  
S. Ravi ◽  
Vitaliy Mezhuyev ◽  
K. Iyswarya Annapoorani ◽  
P. Sukumar

<p>This proposal proposes a DC/DC Buck Boost converter which has been used as a smooth starter for a DC Permanent Magnet Motor. In the existing system the DC/DC Buck Converter is used which provide the output less than the input Signal. Using buck converter it is difficult to increase the value of the input signal. Hence DC/DC Buck- Boost Converter used from which it is possible to get both the increased and decreased output from the given input. Previously pulse width modulation signals with respective to motor voltage is used. However they produce variations in the voltage and current of the motor. The above problem is overcome by using DC/DC Power converter. The proposed system with reduction in size, reduced ripples and increase in speed makes the system to operate at both low and high power applications. The proposed system results in higher efficiency, reduces the ripple content and the stress. The results are validated through MATLAB/Simulink and real time implementation.</p>


Author(s):  
M. H. Yatim ◽  
A. Ponniran ◽  
M. A. Zaini ◽  
M. S. Shaili ◽  
N. A. S. Ngamidun ◽  
...  

The purpose of this study is to analyze the operation and design of symmetrical and asymmetrical multilevel inverter structures with reduced number of switching devices. In this study, the term of conventional inverter is defined as a single cascaded inverter. Specifically, the inverter operates in three complete loops and only produces 2-level and 3-level of output voltages. Usually, cascaded structure suffers from the high total harmonic distortion. Thus, by considering multilevel structure of inverter, low total harmonic distortion reduction and voltage stress reduction on switching devices can be archived. Sinusoidal pulse width modulation and modified square pulse width modulation are used as modulation techniques in switching schemes of the designed multilevel inverters. The findings indicate that, the designed multilevel structure cause low total harmonics distortion at the output voltage. Furthermore, the asymmetrical structure is producing the same output voltage levels with reduced number of switching devices compared to the symmetrical structure is experimentally confirmed. The findings show that the total harmonic distortion for 7-level (symmetrical) and 9-level (asymmetrical) are 16.45% and 15.22%, respectively.


Sign in / Sign up

Export Citation Format

Share Document