scholarly journals An Enhanced H-Bridge Multilevel Inverter with Reduced THD, Conduction, and Switching Losses Using Sinusoidal Tracking Algorithm

Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 81 ◽  
Author(s):  
Annamalai Thiruvengadam ◽  
Udhayakumar K

In this paper, an enhanced H-Bridge multilevel inverter is proposed with the sinusoidal tracking algorithm. The proposed multilevel inverter (MLI) consists of two half H-Bridges cascaded with two unidirectional switches, n direct current (DC) sources, and (n-2) number of bi-directional switches together to form an enhanced H-Bridge (EHB) multilevel inverter. The output voltage levels of an EHB MLI depends on the number of DC sources, the number of bi-directional switches, and the relationship between the magnitude of left-side and right-side DC sources. With the addition of DC sources, bidirectional switches, and employing the sinusoidal tracking algorithm, the performance of the inverter is enhanced with features like an increased number of levels and a reduction in the total harmonic distortion and switching losses. In all the modes of operation of the proposed inverter, only three switches are “ON”, so that conduction losses are less. The proposed enhanced H-Bridge MLI is simulated using MATLAB/Simulink R2017a, and is verified with the experimental result.

2011 ◽  
Vol 383-390 ◽  
pp. 1077-1083
Author(s):  
Run Hua Liu ◽  
Gang Wang

The paper presents the inverter method which based on cascade multilevel inverter and MOSFET-assisted soft-switching of IGBT and modulation strategy against the double requirement of high-power inverter and high frequency. The method can effectively improve the output voltage, reduce harmonic distortion and switching losses, improve the switching frequency and meet the double requirement of the high-power inverter and high frequency. The method proved to be feasible by simulation and experiment.


2022 ◽  
Vol 4 (1) ◽  
pp. 1-13
Author(s):  
Madhu Andela ◽  
Ahmmadhussain Shaik ◽  
Saicharan Beemagoni ◽  
Vishal Kurimilla ◽  
Rajagopal Veramalla ◽  
...  

This paper deals with a reduced switch multi-level inverter for the solar photovoltaic system-based 127-level multi-level inverter. The proposed technique uses the minimum number of switches to achieve the maximum steps in staircase AC output voltage when compared to the flying capacitor multi-level inverter, cascaded type multilevel inverter and diode clamped multi-level inverter. The use of a minimum number of switches decreases the cost of the system. To eliminate the switching losses, in this topology a square wave switch is used instead of pulse width modulation. Thereby the total harmonic distortion (THD) and harmonics have been reduced in the pulsating AC output voltage waveform. The performance of 127-level MLI is compared with 15 level, 31-level and 63-level multilevel inverters. The outcomes of the solar photovoltaic system-based 127-level multi-level inverter have been simulated in a MATLAB R2009b environment.


2019 ◽  
Vol 5 (6) ◽  
pp. 9
Author(s):  
Deepa Raghuwanshi ◽  
Santosh Kumar

Multilevel inverters with a large number of steps can generate high quality voltage waveforms, good enough to be considered as suitable voltage source generators. An advanced multilevel inverter topology is proposed to optimize number of bidirectional switches. In this work the an five-level cascade H-bridge Inverter, which uses multicarrier based control structure and two capacitor with 10 switching MOSFETs topology is being presented. Analysis is done for RL and pure resistive load. The PWM strategy reduces the THD and this strategy enhances the fundamental output voltage. The experimental and simulated results show that total harmonic distortion of output voltage and current waveform shapes are 5.16 % and 5.77% respectively for RL load which are within the acceptable limits.


Author(s):  
Arun V. ◽  
Prabaharan N.

This paper presents the Asymmetrical multilevel inverter with 1:3 voltage propagation. Switching pulse for Asymmetrical multilevel inverter are generated using embedded controller in m-file using MATLAB. The Asymmetrical multilevel inverter with 1:3 voltage propagation can produce high quality output voltage with less number of switches and voltage sources compare to conventional multilevel inverters. Contrasting other switching schemes, the proposed Switching scheme significantly reduces the Total Harmonic Distortion (THD) and minimize switching losses and reduces the complexity. To evaluate the developed scheme, simulations are carried out through MATLAB and real time implementations are done through microcontroller ARM Cortex™-M0 Core. The simulation and hardware results are presented.


Author(s):  
C.R. Balamurugan ◽  
S.P. Natarajan ◽  
R. Bensraj

<p>Multilevel inverters have been opted for high power applications due to reduced harmonic distortion, less device voltage stress and modular structure. This work proposes new modified hybrid H-bridge multilevel inverter using auxiliary switch. This proposed inverter produces five levels output with five power devices and clamping diodes as a phase voltage and nine levels as a line voltage.The levels of the inverters are decided based on the phase voltage not on the line voltage. In this paper the performance of the proposed inverter are measured in terms of line voltage. However, by increase in the number of levels the proposed inverter with reduced number of switches produces low switching losses and improves the efficiency of the inverter. This method achieves the variation of Total Harmonic Distortion (THD) in the inverter and output voltage is observed for various modulation indices. Simulation is performed using MATLAB-SIMULINK for line to line output voltage. Variable Amplitude Phase Disposition (VAPD) strategy provides output with relatively low distortion for all the strategies. It is also seen that VAPOD is found to perform better for all strategies since it provides relatively higher fundamental RMS output voltage.</p>


Author(s):  
J. A. Soo ◽  
M. S. Chye ◽  
Y. C. Tan ◽  
S. L. Ong ◽  
J. H. Leong ◽  
...  

Cascaded H-bridge multilevel inverter (CHBMI) is able to generate a staircase AC output voltage with low switching losses. The switching angles applied to the CHBMI have to be calculated and arranged properly in order to minimize the total harmonic distortion (THD) of the output voltage waveform. In this paper, two non-iterative switching-angle calculation techniques applied for a 15-level binary asymmetric CHBMI are proposed. Both techniques employ a geometric approach to estimate the switching angles, and therefore, the generated equations can be solved directly without iterations, which are usually time-consuming and challenging to be implemented in real-time. Apart from this, both techniques are also able to calculate the switching angles for a wide range of modulation index. The proposed calculation techniques have been validated via MATLAB simulation and experiment.


2018 ◽  
Vol 7 (2.24) ◽  
pp. 55
Author(s):  
Anuja Prashant Diwan ◽  
N Booma Nagarajan ◽  
T Murugan ◽  
S Ashrafudeen ◽  
G J. Jenito Paul

In this paper, single phase nine level cascaded multilevel inverter using trinary voltage source is described. Normally for getting nine level MLI output, four H-Bridges are required. But in proposed method, nine level output is achieved by using two H-Bridges only. Performance of Multilevel inverter is improved by using modular switching pattern. This method reduces the number of switches to the half and thus reduces switching losses. Since the number of levels at the output voltage is increased, Total Harmonic Distortion (THD) gets reduced significantly. This presents simple configuration is simple and can be controlled easily. MATLAB-SIMULINK is used to validate the results of proposed technic, simulation is carried out using. The proposed method has been exhaustively compared with classical cascaded H-Bridge topology. 


Author(s):  
Syed Muzafar Ahmed ◽  
K. Shafeeque Ahmed ◽  
Y. Mohamed Shuaib

This paper presents the discussion about the working principle and simulation of three phases Induction Motor (IM) for electric vehicle fed by five level diode clamped multilevel inverter. Multilevel inverter technology has emerged recently as a very important alternative in the area of EV system. The main objective of this paper is to control the speed of an IM by using 5-level diode clamped multilevel inverter. To obtain high quality sinusoidal output voltage with reduced harmonics, multicarrier PWM control scheme is proposed for diode clamped multilevel inverter. A speed control and torque control can be achieved by using sinusoidal output voltage which has high quality by multicarrier Sinusoidal Pulse Width Modulation (SPWM) technique. The planned system is best progress in production of towering switching losses results compared with other conventional method. The proposed system is an effective replacement for the conventional method which produces high switching losses and results in poor drive performance. The simulation results reveal that the proposed circuit effectively controls the motor speed and enhances the drive performance through reduction in total harmonic distortion. Also this shows that the planned method controls the speed and torque of motor in efficient manner. Hence, the system usefulness is established through simulation.


Author(s):  
C. R. Balamurugan ◽  
S. P. Natarajan ◽  
T. S. Anandhi ◽  
B. Shanthi

For high power applications Multilevel Inverter (MLI) is extensively used. The major advantages of MLI are good power quality, low switching losses and maintenance of the desired voltage. In this work, the three phase cascaded multi level inverter is analyzed under various modulation techniques that include Sub-Harmonic Pulse Width Modulation (SHPWM) i.e. Phase Disposition (PD) strategy, Phase Opposition Disposition (POD) strategy, Alternate Phase Opposition Disposition (APOD) strategy, hybrid strategy (PD and PS) and Phase Shift (PS) strategy. The study will help to choose those techniques with reduced harmonics for the chosen three phase cascaded MLI with R-L load. The Total Harmonic Distortion (THD), VRMS (fundamental), crest factor and form factor are evaluated for various modulation indices at two different switching frequencies (3.15KHz and 6 KHz). Simulation is performed using MATLAB-SIMULINK. It is observed that HYBRID PWM and PSPWM methods provide output with relatively low distortion for low and high switching frequencies. PODPWM and PSPWM are found to perform better since they provide relatively higher fundamental RMS output voltage for 6 KHz and 3.15 KHz switching frequencies. The experimental result shows PSPWM provide output with low distortion and HYBRID PWM provide output with higher fundamental RMS voltage for fc=3.15KHz. The experimental results were obtained only for fc=3.15KHz.


2017 ◽  
Vol 7 (1.5) ◽  
pp. 209
Author(s):  
B.Vijaya Krishna ◽  
B. Venkata Prashanth ◽  
P. Sujatha

Multilevel Inverters (MLI) have very good features when compared to Inverters. But using more switches in the conventional configuration will reduce its application in a wider range. For that reason a modified 7-level MLI Topology is presented. This new topology consists of less number of switches that can be reduced to the maximum extent and a separate gate trigger circuit. This will reduce the switching losses, reduce the size of the multilevel inverter, and cost of installation. This new topology can be used in Electrical drives and renewable energy applications. Performance of the new MLI is tested via. Total harmonic distortion. This construction structure of this multilevel inverter topology can also be increased for 9-level, 11-level and so on and simulated by the use of MATLAB/SIMULINK. A separate Carrier Based PWM Technique is used for the pulse generation in this configuration.


Sign in / Sign up

Export Citation Format

Share Document